Stimulation of the dopamine D1 receptor is reported to cause the phosphorylation of DARPP-32 at the thre34 position and activates the protein. If intracellular Ca 2+ is increased, such as after activation of the glutamate NMDA receptor, calcineurin activity increases and the phosphates will be removed. This balance of phosphorylation control suggests that a D 1 receptor agonist and a NMDA glutamate receptor antagonist should have additive or synergistic actions to increase activated DARPP-32 and consequent behavioral effects. This hypothesis was tested in a volitional consumption of ethanol model: the selectively bred Myers’ high ethanol preferring (mHEP) rat. A 3-day baseline period was followed by 3-days of twice daily injections of drug(s) or vehicle(s) and then a 3-day post-treatment period. Vehicle, the D 1 agonist SKF 38393, the non-competitive NMDA receptor antagonist memantine, or their combination were injected 2 h before and after lights out. The combination of 5.0 mg/kg SKF 38393 with either 3.0 or 10 mg/kg memantine did not produce an additive or synergistic effect. For example, 5.0 mg/kg SKF reduced consumption of ethanol by 27.3% and 10 mg/kg memantine by 39.8%. When combined, consumption declined by 48.2% and the proportion of ethanol solution to total fluids consumed declined by 17%. However, the consumption of food also declined by 36.6%. The latter result indicates that this dose combination had a non-specific effect. The combination of SKF 38393 with (+)-MK-801, another NMDA receptor antagonist, also failed to show an additive effect. The lack of additivity and specificity suggests that the hypothesis may not be correct for this in vivo model. ?The interaction of these different receptor systems with intraneuronal signaling and behaviors needs to be studied further.
References
[1]
Siggins, G.R.; Berger, T.; French, E.D.; Shier, T.; Bloom, F.E. Ethanol, salsolinol and tetrahydropapaveroline alter the discharge of neurons in several brain regions: Comparison to opioid effects. Prog. Clinical. Biol. Res. 1982, 90, 275–287.
[2]
Lovinger, D.M.; White, G.; Weight, F.F. Ethanol inhibits NMDA-activated ion current in hippocampal neurons. Science 1989, 243, 1721–1724.
[3]
Morrisett, R.A.; Swartzwelder, H.S. Attenuation of hippocampal long-term potentiation by ethanol: A patch-clamp analysis of glutamatergic and GABAergic mechanisms. J. Neurosci. 1993, 13, 2264–2272.
[4]
Wayner, M.J.; Armstrong, D.L.; Polan-Curtain, J.L.; Denny, J.B. Ethanol and diazepam inhibition of hippocampal LTP is mediated by angiotensin II and AT1 receptors. Peptides 1993, 14, 441–444, doi:10.1016/0196-9781(93)90129-5.
[5]
Dar, M.S. Mouse cerebellar adenosine-glutamate interactions and modulation of ethanol-induced motor incoordination. Alcohol. Clin. Exp. Res. 2002, 26, 1395–1403, doi:10.1111/j.1530-0277.2002.tb02684.x.
[6]
Dar, M.S. Modulation of ethanol-induced motor incoordination by mouse striatal A(1) adenosinergic receptor. Brain Res. Bull. 2001, 55, 513–520, doi:10.1016/S0361-9230(01)00552-4.
[7]
Myers, R.D.; Borg, S.; Mossberg, R. Antagonism by naltrexone of voluntary alcohol selection in the chronically drinking Macaque monkey. Alcohol 1986, 3, 383–388.
[8]
Myers, R.D.; Critcher, E.C. Naloxone alters alcohol drinking induced in the rat by tetrahydropapaveroline (THP) infused ICV. Pharmacol. Biochem. Behav. 1982, 16, 827–836.
[9]
O’Malley, S.S.; Jaffe, A.J.; Chang, G.; Schottenfeld, R.S.; Meyer, R.E.; Rounsaville, B. Naltrexone and coping skills therapy for alcohol dependence: A controlled study. Arch. Gen. Psychiatry 1992, 49, 881–887, doi:10.1001/archpsyc.1992.01820110045007.
[10]
Volpicelli, J.R.; Alterman, A.I.; Hayashida, M.; O’Brien, C.P. Naltrexone in the treatment of alcohol dependence. Arch. Gen. Psychiatry 1992, 49, 876–880, doi:10.1001/archpsyc.1992.01820110040006.
[11]
Collins, D.M.; Myers, R.D. Buspirone attenuates volitional alcohol intake in the chronically drinking monkey. Alcohol 1987, 4, 449–456, doi:10.1016/0741-8329(87)90084-X.
[12]
Kranzler, H.R.; Burleson, J.A.; Del Boca, F.K.; Babor, T.F.; Korner, P.; Brown, J.; Bohn, M.J. Buspirone treatment of anxious alcoholics: A placebo-controlled trial. Arch. Gen. Psychiatry 1994, 51, 720–731.
[13]
Kranzler, H.R.; Burleson, J.A.; del Boca, F.K.; Bohn, M.J.; Brown, J.; Liebowitz, N. Placebo-controlled trial of fluoxetine as an adjunct to relapse prevention in alcoholics. Am. J. Psychiatry 1995, 152, 391–397.
McMillen, B.A.; Joyner, P.W.; Parmar, C.A.; Tyer, W.E.; Williams, H.L. Effects of NMDA glutamate receptor antagonist drugs on the volitional consumption of ethanol by a genetic drinking rat. Brain Res. Bull. 2004, 64, 279–284, doi:10.1016/j.brainresbull.2004.08.001.
[16]
Malpass, G.E.; Williams, H.L.; McMillen, B.A. Effects of the noncompetitive NMDA receptor antagonist memantine on the volitional consumption of ethanol by alcohol preferring rats. Basic Clin. Pharmacol. Toxicol. 2010, 106, 435–444.
[17]
Holter, S.M.; Danysz, W.; Spanagel, R. Evidence for alcohol anti-craving properties of memantine. Eur. J. Pharmacol. 1996, 314, R1–R2, doi:10.1016/S0014-2999(96)00670-X.
[18]
Bisaga, A; Evans, S.M. Acute effects of memantine in combination with alcohol in moderate drinkers. Psychopharmacology (Berlin) 2004, 172, 16–24, doi:10.1007/s00213-003-1617-5.
[19]
Evans, S.M; Levin, F.R.; Brooks, D.J.; Garawi, F. A pilot double-blind treatment trial of memantine for alcohol dependence. Alcohol. Clin. Exp. Res. 2007, 31, 775–782, doi:10.1111/j.1530-0277.2007.00360.x.
Moss, H.B.; Chen, C.C.; Yi, H.-Y. Subtypes of alcohol dependence in a nationally representative sample. Drug Alcohol Depend. 2007, 91, 149–158, doi:10.1016/j.drugalcdep.2007.05.016.
[22]
Nishi, A.; Bibb, J.A.; Matsuyama, S.; Hamada, M.; Higashi, H.; Nairn, A.C.; Greengard, P. Regulation of DARPP-32 dephosphorylation at PKA- and Cdk5-sites by NMDA and AMPA receptors: Distinct roles of calcineurin and protein phosphatase-2A. J. Neurochem. 2002, 81, 832–841, doi:10.1046/j.1471-4159.2002.00876.x.
[23]
Myers, R.D.; Robinson, D.E.; West, M.W.; Biggs, T.A.G.; McMillen, B.A. Genetics of alcoholism: Rapid development of a new high ethanol preferring (HEP) strain of female and male rats. Alcohol 1998, 16, 343–357, doi:10.1016/S0741-8329(98)00031-7.
[24]
Lipton, S.A. The molecular basis of memantine action in Alzheimer's disease and other neurologic disorders: Low-affinity, uncompetitive antagonism. Curr. Alzheimer Res. 2005, 2, 155–165, doi:10.2174/1567205053585846.
[25]
Lucas, L.A.C.; McMillen, B.A. Differences in brain area concentrations of dopamine and serotonin in Myers’ high ethanol preferring (mHEP) and outbred rats. J. Nerual. Transm. 2002, 109, 279–292, doi:10.1007/s007020200023.
[26]
Zar, J.H. Biostatistical Analysis, 2nd ed.; Pentice-Hall, Inc.: Englewood Cliffs, NJ, USA, 1984; pp. 162–205.
[27]
Malpass, G.E.; Williams, H.L.; McMillen, B.A. Effects of dopaminergic D1 and D2 drugs on volitional ethanol consumption by genetic drinking mHEP rats in a 24-hour two choice paradigm. Alcohol. Clin. Exp. Res. 2007, 31, 139.
[28]
Gonzales, R.A.; Weiss, F. Suppression of ethanol-reinforced behavior by naltrexone is associated with attenuation of the ethanol-induced increase in dialysate dopamine levels in the nucleus accumbens. J. Neurosci. 1998, 18, 10663–10671.
[29]
Davis, V.E; Walsh, M.J. Alcohol, amines, and alkaloids: A possible biochemical basis for alcohol addiction. Science 1970, 167, 1005–1007.
[30]
Mega, B.T.; Sheppard, K.W.; Williams, H.L; McMillen, B.A. On the role of monoamine oxidase-A for the maintenance of the volitional consumption of ethanol in two different rat models. Naunyn Schmiedebergs Arch. Pharmacol. 2002, 366, 319–326, doi:10.1007/s00210-002-0616-0.
[31]
Zhang, T.A.; Hendricson, A.W.; Morrisett, R.A. Dual synaptic sites of D(1)-dopaminergic regulation of ethanol sensitivity of NMDA receptors in nucleus accumbens. Synapse 2005, 58, 30–44, doi:10.1002/syn.20181.
Risinger, F.O.; Freeman, P.A.; Greengard, P.; Fienberg, A.A. Motivational effects of ethanol in DARPP-32 knock-out mice. J. Neurosci. 2001, 21, 340–348.
[34]
McMillen, B.A.; Williams, H.L.; Lehmann, H.; Shepard, P.D. On central muscle relaxants, strychnine-insensitive glycine receptors and two old drugs: Zoxazolamine and HA-966. J. Neural Transm. (Gen. Sect.) 1992, 89, 11–25, doi:10.1007/BF01245348.
[35]
Linseman, M.A. Effects of dopaminergic agents on alcohol consumption by rats in a limited access paradigm. Psychopharmacology (Berlin) 1990, 100, 195–200, doi:10.1007/BF02244405.
[36]
Samson, H.H.; Hodge, C.W.; Tolliver, G.A.; Haraguchi, M. Effect of dopamine agonists and antagonists on ethanol-reinforced behavior: The involvement of the nucleus accumbens. Brain Res. Bull. 1993, 30, 133–141, doi:10.1016/0361-9230(93)90049-H.
[37]
Molloy, A.G.; Waddington, J.L. Sniffing, rearing and locomotor responses to the D-1 dopamine agonist R-SK&F 38393 and to apomorphine: Differential interactions with selective D-1 and D-2 antagonists SCH 23390 and metoclopramide. Eur. J. Pharmacol. 1985, 108, 305–308, doi:10.1016/0014-2999(85)90454-6.
[38]
Williams, J.E.G.; Woolverton, W.L. The D2 agonist quinpirole potentiates the discriminative stimulus effects of the D1 agonist SKF 38393. Pharmacol. Biochem. Behav. 1990, 37, 289–293, doi:10.1016/0091-3057(90)90336-G.
[39]
Mashurano, M.; Waddington, J.L. Stereotyped behavior in response to the selective D-2 dopamine receptor agonist RU 24213 is enhanced by pretreatment with the selective D-1 agonist SK&F 38393. Neuropharmacology 1986, 25, 947–949, doi:10.1016/0028-3908(86)90027-4.
[40]
McMillen, B.A.; Williams, H.L. Role of taste and calories in the selection of ethanol by C57BL/6NHsd and Hsd:ICR mice. Alcohol 1998, 15, 193–198, doi:10.1016/S0741-8329(97)00111-0.