It was the aim of this study to compare the efficiency of the different essential oil extraction methods upon the two winter savory (Satureja montana) samples of different origin. The compared techniques were the headspace gas chromatography with mass spectrometric detection (HS-GC/MS) run at the two different headspace temperatures (i.e., at 80 and 100°C) and the three different steam distillation techniques preceding the GC/MS analysis. HS-GC/MS is considered as the technique of the first choice, and the compared steam distillation techniques are recommended, respectively, by Polish Pharmacopoeia, European Pharmacopoeia, and the Polish Patent. Adequate conclusions were drawn as to the advantage of HS-GC/MS (not having the pharmacopoeial recommendation) over the different steam distillation techniques and the drawbacks of each individual analytical procedure were discussed. 1. Introduction The genus Satureja L. contains over 30 species. Winter savory (Satureja montana) is a perennial plant belonging to the family Lamiaceae, growing mainly in the regions of South Europe. It is a semievergreen subshrub growing to about 50?cm tall with the oval-lanceolate leaves and white flowers. Satureja montana contains numerous subspecies, and there is much variability in morphologic characteristics of the species Satureja montana L. [1]. It is similar in use and flavor to the annual summer savory (Satureja hortensis) and it is cultivated as a culinary herb having spicy flavor. Both summer and winter savory have a long history of use in traditional medicine as tonics, carminatives, astringents, and expectorants, and for the treatment of intestinal problems such as diarrhea and nausea. However, the scientific literature primarily documents Satureja hortensis (and not Satureja montana L.) as a folk remedy in treating various ailments such as cramps, muscle pains, nausea, indigestion, diarrhea, and infectious diseases [1–3]. Winter savory contains ca. 1.6% volatile oil, whereas summer savory only ca. 1.0%. Some authors document the dominant components of the volatile oil as caryophyllene and geraniol, or as carvacrol. The relative composition of the volatile oil varies with the location of cultivation, the species, and the strain [3–6]. The essential oil of the Satureja sp. has a broad spectrum of antimicrobial activity [7–10]. Satureja montana L. also has a potent anti-HIV-1 activity [11]. With this study on fingerprinting of the volatile fraction contained in Satureja montana, we continue our earlier commenced methodical approach to fingerprinting of the volatile
References
[1]
P. Schauenberg and F. Paris, Guide to Medicinal Plants, Keats Publishing, New Canaan, Conn, USA, 1990.
[2]
C. Uslu, R. M. Karasen, F. Sahin, S. Taysi, and F. Akcay, “Effects of aqueous extracts of Satureja hortensis L. on rhinosinusitis treatment in rabbit,” Journal of Ethnopharmacology, vol. 88, no. 2-3, pp. 225–228, 2003.
[3]
J. A. Duke, CRC Handbook of Medicinal Herbs, CRC Press, Boca Raton, Fla, USA, 1985.
[4]
V. Slavkovska, R. Jancic, S. Bojovic, S. Milosavljevic, and D. Djokovic, “Variability of essential oils of Satureja montana L. and Satureja kitaibelii Wierzb. ex Heuff. from the central part of the Balkan peninsula,” Phytochemistry, vol. 57, no. 1, pp. 71–76, 2001.
[5]
M. De Vincenzi, A. Stammati, A. De Vincenzi, and M. Silano, “Constituents of aromatic plants: carvacrol,” Fitoterapia, vol. 75, no. 7-8, pp. 801–804, 2004.
[6]
A. Radonic and M. Milos, “Chemical composition and in vitro evaluation of antioxidant effect of free volatile compounds from Satureja montana L,” Free Radical Research, vol. 37, no. 6, pp. 673–679, 2003.
[7]
M. Güllüce, M. S?kmen, D. Daferera et al., “In vitro antibacterial, antifungal, and antioxidant activities of the essential oil and methanol extracts of herbal parts and callus cultures of Satureja hortensis L,” Journal of Agricultural and Food Chemistry, vol. 51, no. 14, pp. 3958–3965, 2003.
[8]
F. ?ahin, I. Karaman, M. Güllüce et al., “Evaluation of antimicrobial activities of Satureja hortensis L,” Journal of Ethnopharmacology, vol. 87, no. 1, pp. 61–65, 2003.
[9]
M. Ciani, L. Menghini, F. Mariani, R. Pagiotti, A. Menghini, and F. Fatichenti, “Antimicrobial properties of essential oil of Satureja montana L. on pathogenic and spoilage yeasts,” Biotechnology Letters, vol. 22, no. 12, pp. 1007–1010, 2000.
[10]
K. Oberg, L. Rolling, and C. Oberg, “Selection of essential oil components to inhibit Candida without affecting normal microbiota,” The Journal of the Utah Academy of Sciences, Arts, and Letters, vol. 82, pp. 60–72, 2005.
[11]
K. Yamasaki, M. Nakano, T. Kawahata et al., “Anti-HIV-1 activity of herbs in Labiatae,” Biological and Pharmaceutical Bulletin, vol. 21, no. 8, pp. 829–833, 1998.
[12]
J. Rzepa, ?. Wojtal, D. Staszek et al., “Fingerprint of selected salvia species by HS-GC-MS analysis of their volatile fraction,” Journal of Chromatographic Science, vol. 47, no. 7, pp. 575–580, 2009.
[13]
M. Sajewicz, J. Rzepa, M. Hajnos et al., “GC-MS study of the performance of different techniques for isolating the volatile fraction from sage (Salvia L.) species, and comparison of seasonal differences in the composition of this fraction,” Acta Chromatographica, vol. 21, no. 3, pp. 453–471, 2009.
[14]
M. Sajewicz, L. Wojtal, D. Staszek, M. Hajnos, M. Waksmundzka-Hajnos, and T. Kowalska, “Low temperature planar chromatography-densitometry and gas chromatography of essential oils from different sage (Salvia) species,” Journal of Liquid Chromatography and Related Technologies, vol. 33, no. 7-8, pp. 936–947, 2010.
[15]
M. Sajewicz, ?. Wojtal, M. Nati?, D. Staszek, M. Waksmundzka-Hajnos, and T. Kowalska, “TLC-MS versus TLC-LC-MS fingerprints of herbal extracts. Part I. essential oils,” Journal of Liquid Chromatography and Related Technologies, vol. 34, no. 10-11, pp. 848–863, 2011.
European Pharmacopoeia, Vol. 3, pp.68, Maisonneuve SA, Sainte Ruffine, France, 1975.
[18]
Polish Patent No 208058, 2008.
[19]
G. S. ?etkovi?, A. I. Mandi?, J. M. ?anadanovi?-Brunet, S. M. Djilas, and V. T. Tumbas, “HPLC screening of phenolic compounds in winter savory (Satureja montana L.) extracts,” Journal of Liquid Chromatography and Related Technologies, vol. 30, no. 2, pp. 293–306, 2007.
[20]
J. Masteli and I. Jerkovi, “Gas chromatography-mass spectrometry analysis of free and glycoconjugated aroma compounds of seasonally collected Satureja montana L,” Food Chemistry, vol. 80, no. 1, pp. 135–140, 2003.
[21]
R. Kowalski and J. Wawrzykowski, “Effect of ultrasound-assisted maceration on the quality of oil from the leaves of thyme Thymus vulgaris L,” Flavour and Fragrance Journal, vol. 24, no. 2, pp. 69–74, 2009.