全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PMC Physics B  2008 

Metal-insulator transition and electroresistance in lanthanum/calcium manganites La1-xCaxMnO3 (x = 0–0.5) from voltage-current-temperature surfaces

DOI: 10.1186/1754-0429-1-2

Full-Text   Cite this paper   Add to My Lib

Abstract:

Of the perovskites, ABX3, a subset of special interest is the family in which the A site is occupied by a lanthanide ion, the B site by a transition metal and X is oxygen, as such materials often exhibit a large change in electrical resistance in a magnetic field, a phenomenon known as "colossal" magnetoresistance (MR). Two additional phenomena in this family have also drawn attention: the metal-insulator transition (MIT) and electroresistance (ER). The MIT is revealed by measuring resistance as a function of temperature, and observing a change in the sign of the gradient. ER – the dependence of the resistance on applied current – is revealed by measuring resistance as a function of applied current. Up until now, the phenomena of MIT and ER have been treated separately. Here we report simultaneous observation of the MIT and ER in the lanthanum/calcium manganites. We accomplish this by measuring voltage-current curves over a wide temperature range (10–300 K) allowing us to build up an experimental voltage surface over current-temperature axes. These data directly lead to resistance surfaces. This approach provides additional insight into the phenomena of electrical transport in the lanthanum/calcium manganites, in particular the close connection of the maximum ER to the occurrence of the MIT in those cases of a paramagnetic insulator (PMI) to ferromagnetic metal (FMM) transition. PACS Codes: 71.30.+h, 71.38.-k, 75.47.Lx

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133