全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Diversity  2013 

Post-Glacial Spatial Dynamics in a Rainforest Biodiversity Hot Spot

DOI: 10.3390/d5010124

Keywords: Altitudinal range shift, cool temperate rainforest, Elaeocarpus grandis, MtWarning Caldera, Nothofagus moorei, post-glacial warming, warm subtropical rainforest

Full-Text   Cite this paper   Add to My Lib

Abstract:

Here we investigate the interaction between ecology and climate concerning the distribution of rainforest species differentially distributed along altitudinal gradients of eastern Australia. The potential distributions of the two species closely associated with different rainforest types were modelled to infer the potential contribution of post-glacial warming on spatial distribution and altitudinal range shift. Nothofagus moorei is an integral element of cool temperate rainforest, including cloud forests at high elevation. This distinct climatic envelope is at increased risk with future global warming. Elaeocarpus grandis on the other hand is a lowland species and typical element of subtropical rainforest occupying a climatic envelope that may shift upwards into areas currently occupied by N. moorei. Climate envelope models were used to infer range shift differences between the two species in the past (21 thousand years ago), current and future (2050) scenarios, and to provide a framework to explain observed genetic diversity/structure of both species. The models suggest continuing contraction of the highland cool temperate climatic envelope and expansion of the lowland warm subtropical envelope, with both showing a core average increase in elevation in response to post-glacial warming. Spatial and altitudinal overlap between the species climatic envelopes was at a maximum during the last glacial maximum and is predicted to be a minimum at 2050.

References

[1]  Webb, L.J.; Tracey, J.G. Australian Rainforests: Patterns and Change. In Ecological Biogeography of Australia; Keast, A., Ed.; The Hague: Netherlands, 1981; pp. 607–694.
[2]  Hilbert, D.W.; Graham, A.; Hopkins, M.S. Glacial and interglacial refugia within a long-term rainforest refugium: The wet tropics bioregion of northeast Queensland, Australia. Palaeogeogr. Palaeocl. 2007, 251, 104–118, doi:10.1016/j.palaeo.2007.02.020.
[3]  VanDerWal, J.; Shoo, L.P.; Williams, S.E. New approaches to understanding late quaternary climate fluctuations and refugial dynamics in Australian wet tropical rain forests. J. Biogeogr. 2009, 36, 291–301, doi:10.1111/j.1365-2699.2008.01993.x.
[4]  Burbidge, N.T. The phytogeography of the Australian region. Aust. J. Bot. 1960, 8, 75–211, doi:10.1071/BT9600075.
[5]  Mellick, R.; Lowe, A.; Allen, C.D.; Hill, R.S.; Rossetto, M. Palaeodistribution modelling and genetic evidence highlight differential post-glacial range shifts of a rain forest conifer distributed across a latitudinal gradient. J. Biogeogr. 2012, 39, 2292–2302, doi:10.1111/j.1365-2699.2012.02747.x.
[6]  Mellick, R.; Lowe, A.; Rossetto, M. Consequences of long- and short-term fragmentation on the genetic diversity and differentiation of a late successional rainforest conifer. Aust. J. Bot. 2011, 59, 351–362.
[7]  Rossetto, M.; Kooyman, R. The tension between dispersal and persistence regulates the current distribution of rare palaeo-endemic rain forest flora: A case study. J. Ecol. 2005, 93, 906, doi:10.1111/j.1365-2745.2005.01046.x.
[8]  Rossetto, M.; Kooyman, R.; Sherwin, W.; Jones, R. Dispersal limitations, rather than bottlenecks or habitat specificity, can restrict the distribution of rare and endemic rainforest trees. Am. J. Bot. 2008, 95, 321–329, doi:10.3732/ajb.95.3.321.
[9]  Rossetto, M.; Crayn, D.; Ford, A.; Mellick, R.; Sommerville, K. The influence of environment and life-history traits on the distribution of genes and individuals: A comparative study of 11 rainforest trees. Mol. Ecol. 2009, 18, 1422–1438, doi:10.1111/j.1365-294X.2009.04111.x.
[10]  Laidlaw, M. Monitoring for climate driven floristic shift in Australian subtropical rainforest. Australas Plant Conserv. 2012, 20, 16–17.
[11]  Thomas, C.D. Climate, climate change and range boundaries. Divers. Distrib. 2011, 16, 488–495, doi:10.1111/j.1472-4642.2010.00642.x.
[12]  Hughes, L. Biological consequences of global warming: Is the signal already apparent? Trend Ecol. Evol. 2000, 15, 56–61, doi:10.1016/S0169-5347(99)01764-4.
[13]  Kershaw, A.P.; McKenzie, G.M.; Porch, N.; Roberts, R.G.; Brown, J.; Heijnis, H.; Orr, M.L.; Jacobsen, G.; Newallt, P.R. A high-resolution record of vegetation and climate through the last glacial cycle from Caledonia Fen, south eastern highlands of Australia. J. Quat. Sci. 2007, 22, 481–500, doi:10.1002/jqs.1127.
[14]  Rossetto, M. From populations to communities: Understanding changes in rainforest diversity through the integration of molecular, ecological and environmental data. Telopea 2008, 12, 47–58.
[15]  Kooyman, R.; Rossetto, M.; Cornwell, W.; Westoby, M. Phylogenetic tests of community assembly across regional to continental scales in tropical and subtropical rain forests. Global Ecol. Biogeogr. 2011, 20, 707–716, doi:10.1111/j.1466-8238.2010.00641.x.
[16]  Hill, R.S.; Dettman, M.E. Origin and Diversification of the Genus Nothofagus. In The Ecology and Biogeography of Nothofagus Forest; Veblen, T.T., Hill, R.S., Eds.; Yale University Press: New Haven, CT, USA, 1996; pp. 11–24.
[17]  Hill, R.S. The History of Selected Australian Taxa. In History of the Australian Vegetation:Cretaceous to Recent; Hill, R.S., Ed.; Cambridge University Press: Cambridge, UK, 1994; pp. 390–419.
[18]  Quinn, C.J.; Price, R.A. Phylogeny of the Southern Hemisphere conifers. Acta Hortic. 2003, 615, 129–136.
[19]  Hill, R.S. Nothofagus: Evolution from a southern perspective. Trend Ecol. Evol. 1992, 7, 190–194, doi:10.1016/0169-5347(92)90071-I.
[20]  Hill, R.S. Biogeography, evolution and palaeoecology of Nothofagus. (Nothofagaceae): The contribution of the fossil record. Aust. J. Bot. 2001, 49, 321–332, doi:10.1071/BT00026.
[21]  Read, J.; Hill, R.S.; Hope, G.S.; Carpenter, R.J. The contrasting biology of tropical versus temperate Nothofagus species and its relevance to interpretations of Cenozoic rainforest history in southeast Australia. Terra Australis. 2010, 32, 257–274.
[22]  Read, J.; Hope, G.S. Foliar frost-resistance of some evergreen tropical and extratropical Australasian Nothofagus species. Aust. J. Bot. 1989, 37, 361–373, doi:10.1071/BT9890361.
[23]  Dodson, J.R. Mire development and environmental change, Barrington Tops, New South Wales, Australia. Quat. Res. 1987, 27, 73–81, doi:10.1016/0033-5894(87)90050-0.
[24]  Hutley, L.B.; Doley, D.; Yates, D.J.; Boonsaner, A. Water balance of an Australian subtropical rainforest at altitude: The ecological and physiological significance of intercepted cloud and fog. Aust. J. Bot. 1997, 45, 311–329, doi:10.1071/BT96014.
[25]  Franks, A.J.; Bergstrom, D.M. Corticolous bryophytes in microphyll fern forests of south-east Queensland: Distribution on Antarctic Beech (Nothofagus moorei). Austral. Ecol. 2000, 25, 386–393, doi:10.1046/j.1442-9993.2000.01048.x.
[26]  Bale, C.L.; Williams, J.B. Composition and classification of Nothofagus moorei communities in northern New South Wales. Aust. Syst. Bot. 1993, 6, 429–440, doi:10.1071/SB9930429.
[27]  Hill, R.S.; Jordan, G.J. The evolutionary history of Nothofagus (Nothofagaceae). Aust. Syst.Bot. 1993, 6, 111–126, doi:10.1071/SB9930111.
[28]  Linder, P.H.; Crisp, M.D. Nothofagus and pacific biogeography. Cladistics 1995, 11, 5–32, doi:10.1111/j.1096-0031.1995.tb00002.x.
[29]  Premoli, A.C.; Steinke, L. Genetics of sprouting: Effects of long-term persistence in fire-prone ecosystems. Mol. Ecol. 2008, 3827–3835, doi:10.1111/j.1365-294X.2008.03889.x.
[30]  Schultz, L. Conservation genetics of a Gondwana relict rainforest tree, Nothofagus moorei (f.Muell.) Krasser. PhD Thesis, Queensland University of Technology, Brisbane, Australia, 2008.
[31]  Taylor, K.J.; Lowe, A.J.; Hunter, R.J.; Ridgway, T.; Gresshoff, P.M.; Rossetto, M. Genetic diversity and regional identity in the Australian remnant Nothofagus moorei. Aust. J. Bot. 2005, 53, 437–444, doi:10.1071/BT04215.
[32]  Coode, M.J.E. Elaeocarpus. in Australia and New Zealand. Kew Bull. 1984, 39, 509–586, doi:10.2307/4108594.
[33]  Rossetto, M.; Jones, R.; Hunter, J. Genetic effects of rainforest fragmentation in an early successional tree (Elaeocarpus grandis). Heredity 2004, 93, 610–618, doi:10.1038/sj.hdy.6800585.
[34]  Webb, L.J.; Tracey, J.G.; Williams, W.T. A floristic framework of Australian rainforests. Aust. J. Ecol. 1984, 9, 169–198, doi:10.1111/j.1442-9993.1984.tb01356.x.
[35]  Harden, G.J. Flora of NewSouth. Wales; University of NSW press: Sydney, Australia, 1990.
[36]  Landcare, B.S.R. Subtropical Rainforest Restoration: A practical Manual and Data Source for Landcare Groups, Land Managers and Rainforest Regenerators, 2nd ed.; Big Scrub Rainforest Landcare Group: Lismore, Australia, 2005.
[37]  Crayn, D.M.; Rossetto, M.; Maynard, D.J. Molecular phylogeny and dating reveals an Oligo-Miocene radiation of dry-adapted shrubs (former Tremandraceae) from rainforest tree progenitors (Elaeocarpaceae) in Australia. Am. J. Bot. 2006, 93, 1328, doi:10.3732/ajb.93.9.1328.
[38]  Pole, M. The New Zealand flora-entirely long-distance dispersal? J. Biogeogr. 1994, 21, 625–635, doi:10.2307/2846036.
[39]  Winkworth, R.C.; Wagstaff, S.J.; Glenny, D.; Lockhart, P.J. Plant dispersal N.E.W.S. from New Zealand. Trends Ecol. Evol. 2002, 17, 514–520, doi:10.1016/S0169-5347(02)02590-9.
[40]  Rozefelds, A.C.; Christophel, D.C. Elaeocarpus (Elaeocarpaceae) endocarps from the Oligo-Miocene of eastern Australia. Pap. Proc. R. Soc. Tasman. 1996, 130, 41–48.
[41]  Rozefelds, A.C.; Christophel, D.C. Cenozoic Elaeocarpus (Elaeocarpaceae) fruits from Australia. Alcheringa 2002, 26.
[42]  Rossetto, M.; Crayn, D.; Ford, A.; Ridgeway, P.; Rymer, P. The comparative study of range-wide genetic structure across related, co-distributed rainforest trees reveals contrasting evolutionary histories. Aust. J. Bot. 2007, 55, 416–424, doi:10.1071/BT06195.
[43]  Rossetto, M.; Jones, R.C.; McNally, J. Isolation of microsatellite loci from a rainforest tree, Elaeocarpus grandis (Elaeocarpaceae), and amplification across closely related taxa. Mol. Ecol.Notes 2002, 2, 179–181, doi:10.1046/j.1471-8286.2002.00202.x.
[44]  Office of Environment and Heritage’s vegetation survey database (YETI). Available online: http://www.environment.nsw.gov.au/research/VISplot.htm) (accessed on 4 January 2013).
[45]  Atlas of Living Australia databases. Available online: http://www.ala.org.au/) (accessed on 4 January 2013).
[46]  Hijmans, R.J.; Cameron, S.E.; Parra, J.L.; Jones, P.G.; Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 2005, 25, 1965–1978, doi:10.1002/joc.1276.
[47]  Busby, J.R. Bioclim-a bioclimate analysis and prediction system. Plant Prot. Q. 1991, 6, 8–9.
[48]  PMIP2 website. Available online: http://pmip2.lsce.ipsl.fr/) (accessed on 4 January 2013).
[49]  Solomon, S.; Qin, D.; Manning, M.; Marquis, M.; Averyt, K.; Tignor, M.M.B.; Miller, H.L., Jr.; Chen, Z. Climate Change 2007: The Physical Science Basis; Cambridge University Press: Cambridge, UK, 2007.
[50]  Nakicenovic, N.; Alcamo, J.; Davis, G.; de Vries, B.; Fenhann, J.; Gaffin, S.; Gregory, K.; Grubler, A.; Jung, T.Y.; Kram, T.; et al. Special Report on Emissions Scenarios : A Special Report of Working Group III of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2000.
[51]  Raupach, M.R.; Marland, G.; Ciais, P.; Le Quéré, C.; Canadell, J.G.; Klepper, G.; Field, C.B. Global and regional drivers of accelerating CO2 emissions. Proc. Natl. Acad. Sci. USA 2007, 104, 10288–10293.
[52]  Climate Model Inter-comparison Project dataset. Available online: https://www.esg.llnl.gov:8443/home/publicHomePage.do (accessed on 4 January 2013).
[53]  Press, W.H.; Teukolsky, S.A.; Vetterling, W.T.; Flannery, B.P. Numerical Recipes in C++. The Art of Scientific Computing, 2nd ed.; Cambridge University Press: Cambridge, UK, 2002.
[54]  Phillips, S.J.; Anderson, R.P.; Schapire, R.E. Maximum entropy modeling of species geographic distributions. Ecol.Model. 2006, 190, 231–259, doi:10.1016/j.ecolmodel.2005.03.026.
[55]  MaxEnt 3.3.3e software. Available online: http://www.cs.princeton.edu/~schapire/maxent/ (accessed on 4 January 2013).
[56]  Elith, J.; Graham, C.H.; Anderson, R.P.; Dudik, M.; Ferrier, S.; Guisan, A.; Hijmans, R.J.; Huettmann, F.; Leathwick, J.R.; Lehmann, A.; et al. Novel methods improve prediction of species’ distributions from occurrence data. Ecography 2006, 29, 129–151, doi:10.1111/j.2006.0906-7590.04596.x.
[57]  Elith, J.; Phillips, S.J.; Hastie, T.; Dudík, M.; Chee, Y.E.; Yates, C.J. A statistical explanation of MaxEnt for ecologists. Divers. Distrib. 2011, 17, 43–57, doi:10.1111/j.1472-4642.2010.00725.x.
[58]  Saatchi, S.; Buermann, W.; Ter Steege, H.; Mori, S.; Smith, T.B. Modeling distribution of Amazonian tree species and diversity using remote sensing measurements. Remote Sens. Environ. 2008, 112, 2000–2017, doi:10.1016/j.rse.2008.01.008.
[59]  Liu, C.; Berry, P.M.; Dawson, T.P.; Pearson, R.G. Selecting thresholds of occurrence in the prediction of species distributions. Ecography 2005, 28, 385–393, doi:10.1111/j.0906-7590.2005.03957.x.
[60]  WorldClim website. Available online: http://www.worldclim.org/ (accessed on 4 January 2013).
[61]  R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing: Vienna, Austria, 2012.
[62]  Christophel, D.C. Evolution of the Australian flora. Plant Syst. Evol. 1989, 63–78, doi:10.1007/BF00936910.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133