We presented an overview of improvements in detection limit and responsivity of our biomimetic hair flow sensors by electrostatic spring-softening (ESS). Applying a DC-bias voltage to our capacitive flow sensors improves the responsively by up to 80% for flow signals at frequencies below the sensor’s resonance. Application of frequency matched AC-bias voltages allows for tunable filtering and selective gain up to 20 dB. Furthermore, the quality and fidelity of low frequency flow measurements can be improved using a non frequency-matched AC-bias voltage, resulting in a flow detection limit down to 5 mm/s at low (30 Hz) frequencies. The merits and applicability of the three methods are discussed.
References
[1]
Droogendijk, H.; Bruinink, C.M.; Sanders, R.G.P.; Dagamseh, A.M.K.; Wiegerink, R.J.; Krijnen, G.J.M. Improving the performance of biomimetic hair-flow sensors by electrostatic spring softening. J. Micromech. Microeng. 2012, 22, doi:10.1088/0960-1317/22/6/065026.
[2]
Droogendijk, H.; Bruinink, C.M.; Sanders, R.G.P.; Krijnen, G.J.M. Non-resonant parametric amplification in biomimetic hair flow sensors: Selective gain and tunable filtering. Appl. Phys. Lett. 2011, 99, doi:10.1063/1.3663865.
[3]
Droogendijk, H.; Bruinink, C.M.; Sanders, R.G.P.; Krijnen, G.J.M. Application of electro mechanical stiffness modulation in biomimetic hair flow sensors. In Proceedings of the IEEE 25th International Conference on Micro Electro Mechanical Systems (MEMS), Paris, France, 29 January–2 February 2012; pp. 531–534.
[4]
Humphrey, J.A.; Devarakonda, R.; Iglesias, I.; Barth, F. Dynamics of arthropod filiform hairs. I. Mathematical modeling of the hair and air motions. Phil. Trans. R. Soc. B 1993, 340, 423–444, doi:10.1098/rstb.1993.0083.
[5]
Shimozawa, T.; Kumagai, R.; Baba, Y. Structural scaling and functional design of the cercal wind-receptor hairs of cricket. J. Comp. Physiol. A 1998, 183, 171–186, doi:10.1007/s003590050245.
[6]
Shimozawa, T.; Murakami, J.; Kumagai, T. Cricket Wind Receptors: Thermal Noise for the Highest Sensitivity Known. In Sensors and Sensing in Biology and Engineering; Barth, F.G., Humphrey, J.A.C., Secomb, T.W., Eds.; Springer: London, UK, 2003; pp. 145–159.
[7]
Ozaki, Y.; Ohyama, T.; Yasuda, T.; Shimoyama, I. An air flow sensor modeled on wind receptor hairs of insects. In Proceedings of the Thirteenth Annual International Conference on Micro Electro Mechanical Systems (MEMS), Miyazaki, Japan, 23–27 January 2000; pp. 531–536.
[8]
Tao, J.; Yu, X. Hair flow sensors: From bio-inspiration to bio-mimicking—A review. Smart Mater. Struct. 2012, 21, doi:10.1088/0964-1726/21/11/113001.
[9]
Chen, N.; Tucker, C.; Engel, J.; Yang, Y.; Pandya, S.; Liu, C. Design and characterization of artificial haircell sensor for flow sensing with ultrahigh velocity and angular sensitivity. J. Microelectromech. Syst. 2007, 16, 999–1014, doi:10.1109/JMEMS.2007.902436.
[10]
Wang, Y.-H.; Lee, C.-Y.; Chiang, C.M. A MEMS-based air flow sensor with a free-standing microcantilever structure. Sensors 2007, 7, 2379–2401.
[11]
Sadeghi, M.; Peterson, R.; Najafi, K. Micro-hydraulic structure for high performance biomimetic air flow sensor arrays. In Proceedings of the 2011 IEEE International Electron Devices Meeting (IEDM), Washington, DC, USA, 5–7 December 2011; pp. 29.4.1–29.4.4.
[12]
Dijkstra, M.; van Baar, J.J.J.; Wiegerink, R.J.; Lammerink, T.S.J.; de Boer, J.H.; Krijnen, G.J.M. Artificial sensory hairs based on the flow sensitive receptor hairs of crickets. J. Micromech. Microeng. 2005, 15, S132–S138, doi:10.1088/0960-1317/15/7/019.
[13]
Bruinink, C.M.; Jaganatharaja, R.K.; de Boer, M.J.; Berenschot, J.W.; Kolster, M.L.; Lammerink, T.S.J.; Wiegerink, R.J.; Krijnen, G.J.M. Advancements in technology and design of biomimetic flow-sensor arrays. In Proceedings of the IEEE 22nd International Conference on Micro Electro Mechanical System (MEMS), Sorrento, Italy, 25–29 January 2009; pp. 152–155.
[14]
Dagamseh, A.M.K.; Bruinink, C.M.; Droogendijk, H.; Wiegerink, R.J.; Lammerink, T.S.J.; Krijnen, G.J.M. Engineering of biomimetic hair-flow sensor arrays dedicated to high-resolution flow field measurements. In Proceedings of the IEEE Sensors 2010 Conference, Waikoloa, HI, USA, 1–4 November 2010; pp. 2251–2254.
[15]
Dagamseh, A.M.K.; Wiegerink, R.J.; Lammerink, T.S.J.; Krijnen, G.J.M. Towards a high-resolution flow camera using artificial hair sensor arrays for flow pattern observations. Bioinsp. Biomim. 2012, 7, doi:10.1088/1748-3182/7/4/046009.
[16]
Krijnen, G.J.M.; Dijkstra, M.; van Baar, J.J.J.; Shankar, S.S.; Kuipers, W.J.; de Boer, R.J.H.; Altpeter, D.; Lammerink, T.S.J.; Wiegerink, R.J. MEMS based hair flow-sensors as model systems for acoustic perception studies. Nanotechnology 2006, 17, S84–S89.
[17]
Floris, J.; Izadi, N.; Jaganatharaja, R.K.; Wiegerink, R.J.; Lammerink, T.S.J.; Krijnen, G.J.M. Adaptation for frequency focusing and increased sensitivity in biomimetic flow sensors using electrostatic spring softening. In Proceedings of the Transducers 2007 Conference, Lyon, France, 10–14 June 2007; pp. 1267–1270.
[18]
Rugar, D.; Grütter, P. Mechanical parametric amplification and thermomechanical noise squeezing. Phys. Rev. Lett. 1991, 67, 699–702, doi:10.1103/PhysRevLett.67.699.
[19]
Carr, D.W.; Evoy, S.; Sekaric, L.; Craighead, H.G.; Parpia, J.M. Parametric amplification in a torsional microresonator. Appl. Phys. Lett. 2000, 77, 1545–1547.