全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Adaptive Gain and Analog Wavelet Transform for Low-Power Infrared Image Sensors

DOI: 10.1155/2012/610176

Full-Text   Cite this paper   Add to My Lib

Abstract:

A decorrelation and analog-to-digital conversion scheme aiming to reduce the power consumption of infrared image sensors is presented in this paper. To exploit both intraframe redundancy and inherent photon shot noise characteristics, a column based 1D Haar analog wavelet transform combined with variable gain amplification prior to A/D conversion is used. This allows to use only an 11-bit ADC, instead of a 13-bit one, and to save 15% of data transfer. An pixels test circuit demonstrates this functionality. 1. Introduction Modern high-performance infrared sensors, like CdHgTe-based ones, require low-power consumption and digital output to reduce their cost and increase their ease of use, by avoiding the need for analog components on proximity board. However, when developing large format sensors (e.g., ) the bottlenecks of analog-to-digital conversion and data transfer for low-power compliance worsen. Thus, the first two main contributors to power consumption, to consider for minimizing it, are the analog-to-digital converters (ADC-) and the drivers for data transfer off the chip. Several digital read-out circuits have been demonstrated, relying on pixel-level [1], column-level [2], or array-level A/D conversion. In such sensors, power optimization is focused on the ADC itself, and each pixel signal is treated as completely independent, in time and space, from the others. Thus no specific transfer rate optimization is implemented. Moreover, the ADC noise figure is defined with regards to the lowest-input signal noise, without considering the signal and noise dependency in the case of photons; this leads to over-conservative conversion for large input fluxes. To target the data transfer power, compression is a well-known technique used in image processing to reduce the bit rate. Compression algorithms are composed of two steps: firstly, data are decorrelated using either a predictor or a transformation, then entropy coding is applied to reduce the bit rate. Implementations of compression are mostly digital; however, decorrelation schemes can also be implemented in the analog domain [3–5]. This paper, by exploiting the input signal characteristics as well as the inherent spatial redundancy, targets a decrease of both the ADC resolution and the amount of data transfer. It presents a decorrelation scheme based on a modified first-level Haar decorrelation combined with a variable gain applied to its coefficients accordingly to their probability density function (PDF). This paper is organised as follows. Section 2 discusses the main noise contributions in an

References

[1]  X. Wang, W. Wong, and R. Hornsey, “A high dynamic range CMOS image sensor with inpixel light-to-frequency conversion,” IEEE Transactions on Electron Devices, vol. 53, no. 12, pp. 2988–2992, 2006.
[2]  M. F. Snoeij, A. J.P. Theuwissen, K. A.A. Makinwa, and J. H. Huijsing, “Multiple-ramp column-parallel ADC architectures for CMOS image sensors,” IEEE Journal of Solid-State Circuits, vol. 42, no. 12, pp. 2968–2977, 2007.
[3]  W. D. León-Salas, S. Balkir, K. Sayood, N. Schemm, and M. W. Hoffman, “A CMOS imager with focal plane compression using predictive coding,” IEEE Journal of Solid-State Circuits, vol. 42, no. 11, Article ID 4362102, pp. 2555–2572, 2007.
[4]  Q. Luo and J. G. Harris, “A novel integration of on-sensor wavelet compression for a CMOS imager,” in Proceedings of the IEEE International Symposium on Circuits and Systems (ISCAS'02), pp. III/325–III/328, May 2002.
[5]  S. Kawahito, M. Yoshida, M. Sasaki et al., “A CMOS image sensor with analog two-dimensional DCT-based compression circuits for one-chip cameras,” IEEE Journal of Solid-State Circuits, vol. 32, no. 12, pp. 2030–2041, 1997.
[6]  H. Tian, B. Fowler, and A. El Gamal, “Analysis of temporal noise in CMOS photodiode active pixel sensor,” IEEE Journal of Solid-State Circuits, vol. 36, no. 1, pp. 92–101, 2001.
[7]  A. Olyaei and R. Genov, “CMOS wavelet compression imager architecture,” in Proceedings of the 7th IEEE Emerging Technologies Workshop: Circuits and Systems for 4G Mobile Communications (ETW'05), pp. 104–107, June 2005.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133