The prevalence of Legionella pneumophilia in water systems of residential facilities in Kuwait was performed during the period from November 2007 to November 2011. A total of 204 water samples collected from faucets and showerheads in bathrooms (n = 82), taps in kitchens (n = 51), and water tanks (n = 71), from different locations of residential facilities in Kuwait were screened for Legionella pneumophila by the standard culture method and by real time polymerase chain reaction (RT-PCR). Out of the 204 samples, 89 (43.6%) samples were positive for Legionella spp., 48 (23.5%) samples were detected by the standard culture method, and 85 (41.7%) were detected by RT-PCR. Of the culture positive Legionella samples, counts ranged between 10 to 2250 CFU/L. Serological typing of 48 Legionella isolates revealed that 6 (12.5%) of these isolates belonged to Legionella pneumophila serogroup 1, 37 (77.1%) isolates to Legionella pneumophila serogroup 3, and 1 isolate each (2.1%) belonged to serogroups 4, 7, and 10. The minimum inhibitory concentration (MICs) of the 46 environmental L. pneumophila isolates against the 10 antimicrobials commonly used for Legionella infection treatments were determined. Rifampicin was found to be the most active against L. pneumophila serogroups isolates in vitro. 1. Introduction Outbreaks of Legionnaires’ disease have been worldwide traced to a wide variety of environmental water sources such as cooling towers, hot tubs, showerheads, whirlpools and spas, and public fountains [1, 2]. Legionella pneumophila serogroup 1 is responsible for up to 80% of Legionnaires’ disease reported cases [3, 4]. The potential health risk of Legionella to humans is theoretically associated with cells densities above 104 to 105 CFU per liter of water [5, 6]. Commonly used method for environmental surveillance of Legionella is the standard culture technique [7, 8]. Although the standard culture method allows the isolation and the quantification of Legionella from the environment, it does have its limitations: it requires selective media and prolonged incubation periods; bacterial loss can occur during the concentration stage followed by decontamination with heat or acid; interference of background organisms with Legionella growth may lead to an underestimation of the real number of Legionella present in the sample; Legionella spp. may enter a viable but noncultivable state, making it difficult to culture from water samples [9]. Recently, rapid and sensitive alternative methods have been found to be attractive alternatives to the conventional culture method
References
[1]
R. M. Atlas, “Legionella: from environmental habitats to disease pathology, detection and control,” Environmental Microbiology, vol. 1, no. 4, pp. 283–293, 1999.
[2]
A. Doleans, H. Aurell, M. Reyrolle et al., “Clinical and environmental distributions of Legionella strains in France are different,” Journal of Clinical Microbiology, vol. 42, no. 1, pp. 458–460, 2004.
[3]
J. H. Helbig, S. Bernander, M. Castellani Pastoris et al., “Pan-European study on culture-proven Legionnaires' disease: distribution of Legionella pneumophila serogroups and monoclonal subgroups,” European Journal of Clinical Microbiology and Infectious Diseases, vol. 21, no. 10, pp. 710–716, 2002.
[4]
V. L. Yu, J. F. Plouffe, M. C. Pastoris et al., “Distribution of Legionella species and serogroups isolated by culture in patients with sporadic community-acquired legionellosis: an international collaborative survey,” Journal of Infectious Diseases, vol. 186, no. 1, pp. 127–128, 2002.
[5]
M. Best, V. L. Yu, and J. Stout, “Legionellaceae in the hospital water-supply. Epidemiological link with disease and evaluation of a method for control of nosocomial legionnaires' disease and Pittsburgh pneumonia,” The Lancet, vol. 2, no. 8345, pp. 307–310, 1983.
[6]
J. L. Kool, D. Bergmire-Sweat, J. C. Butler et al., “Hospital characteristics associated with colonization of water systems by Legionella and risk of nosocomial Legionnaires' disease: a cohort study of 15 hospitals,” Infection Control and Hospital Epidemiology, vol. 20, no. 12, pp. 798–805, 1999.
[7]
Association Francaise de Normalisation, “Testing water-detection and enumeration of Legionella et de Legionella pneumophila-general method by direct culture and membrane filtration,” French Standard AFNOR NF T90-431, Association Francaise de Normalisation, Paris, France, 1993.
[8]
International Standards Organization, “Water quality-detection and enumeration of Legionella,” International standard ISO, 11731, International Standards Organization (International Organization for Standardization), Geneva, Switzerland, 1998.
[9]
J. Hay, D. V. Seal, B. Billcliffe, and J. H. Freer, “Non-culturable Legionella pneumophila associated with Acanthamoeba castellanii: detection of the bacterium using DNA amplification and hybridization,” Journal of Applied Bacteriology, vol. 78, no. 1, pp. 61–65, 1995.
[10]
J. L. Cloud, K. C. Carroll, P. Pixton, M. Erali, and D. R. Hillyard, “Detection of Legionella species in respiratory specimens using PCR with sequencing confirmation,” Journal of Clinical Microbiology, vol. 38, no. 5, pp. 1709–1712, 2000.
[11]
M. Koide, A. Saito, N. Kusano, and F. Higa, “Detection of Legionella spp. in cooling tower water by the polymerase chain reaction method,” Applied and Environmental Microbiology, vol. 59, no. 6, pp. 1943–1946, 1993.
[12]
D. Lye, G. S. Fout, S. R. Crout, R. Danielson, C. L. Thio, and C. M. Paszko-Kolva, “Survey of ground, surface, and potable waters for the presence of Legionella species by EnviroAmpR PCR Legionella kit, culture, and immunofluorescent staining,” Water Research, vol. 31, no. 2, pp. 287–293, 1997.
[13]
H. Miyamoto, H. Yamamoto, K. Arima et al., “Development of a new seminested PCR method for detection of Legionella species and its application to surveillance of Legionellae in hospital cooling tower water,” Applied and Environmental Microbiology, vol. 63, no. 7, pp. 2489–2494, 1997.
[14]
P. Villari, E. Motti, C. Farullo, and I. Torre, “Comparison of conventional culture and PCR methods for the detection of Legionella pneumophila in water,” Letters in Applied Microbiology, vol. 27, no. 2, pp. 106–110, 1998.
[15]
N. Wellinghausen, C. Frost, and R. Marre, “Detection of Legionellae in hospital water samples by quantitative real-time LightCycler PCR,” Applied and Environmental Microbiology, vol. 67, no. 9, pp. 3985–3993, 2001.
[16]
A. L. Ballard, N. K. Fry, L. Chan et al., “Detection of Legionella pneumophila using a real-time PCR hybridization assay,” Journal of Clinical Microbiology, vol. 38, no. 11, pp. 4215–4218, 2000.
[17]
P. Joly, P. A. Falconnet, J. André et al., “Quantitative real-time Legionella PCR for environmental water samples: data interpretation,” Applied and Environmental Microbiology, vol. 72, no. 4, pp. 2801–2808, 2006.
[18]
J. A. Qasem, A. S. Mustafa, and Z. U. Khan, “Legionella in clinical specimens and hospital water supply facilities: molecular detection and genotyping of the isolates,” Medical Principles and Practice, vol. 17, no. 1, pp. 49–55, 2008.
[19]
N. Al-Terkait and A. Sadak, “A travel abroad-associated case of Legionella pneumonia,” Kuwait Medical Journal, vol. 38, pp. 59–60, 2006.
[20]
N. Behbehani, A. Mahmood, E. M. Mokaddas et al., “Significance of atypical pathogens among community-acquired pneumonia adult patients admitted to hospital in Kuwait,” Medical Principles and Practice, vol. 14, no. 4, pp. 235–240, 2005.
[21]
Ministry of Planning, Annual Statistical Abstract, Central Statistical Bureau, State of Kuwait, 46th edition, 2009.
[22]
AS/NZS 3896, Waters-Examination for Legionellae, Standards Australia, North Sydney, Australia, 1998.
[23]
C. W. Svarrer, C. Luck, P. L. Elverdal, and S. A. Uldum, “Immunochromatic kits Xpect Legionella and BinaxNOW Legionella for detection of Legionella pneumophila urinary antigen have low sensitivities for the diagnosis of Legionnaires' disease,” Journal of Medical Microbiology, vol. 61, pp. 213–217, 2012.
[24]
P. J. Bruin, E. P. F. Ijzerman, J. W. den Boer, J. W. Mouton, and B. M. W. Diederen, “Wild-type MIC distribution and epidemiological cut-off values in clinical Legionella pneumophila serogroup 1 isolates,” Diagnostic Microbiology and Infectious Disease, vol. 72, pp. 103–108, 2012.
[25]
J. Behets, P. Declerck, Y. Delaedt, B. Creemers, and F. Ollevier, “Development and evaluation of a Taqman duplex real-time PCR quantification method for reliable enumeration of Legionella pneumophila in water samples,” Journal of Microbiological Methods, vol. 68, no. 1, pp. 137–144, 2007.
[26]
K. Levi, J. Smedley, and K. J. Towner, “Evaluation of a real-time PCR hybridization assay for rapid detection of Legionella pneumophila in hospital and environmental water samples,” Clinical Microbiology and Infection, vol. 9, no. 7, pp. 754–758, 2003.
[27]
F. Morio, S. Corvec, N. Caroff, F. Le Gallou, H. Drugeon, and A. Reynaud, “Real-time PCR assay for the detection and quantification of Legionella pneumophila in environmental water samples: utility for daily practice,” International Journal of Hygiene and Environmental Health, vol. 211, no. 3-4, pp. 403–411, 2008.
[28]
D. F. Yaradou, S. Hallier-Soulier, S. Moreau et al., “Integrated real-time PCR for detection and monitoring of Legionella pneumophila in water systems,” Applied and Environmental Microbiology, vol. 73, no. 5, pp. 1452–1456, 2007.
[29]
C. Tram, M. Simonet, M. H. Nicolas et al., “Molecular typing of nosocomial isolates of Legionella pneumophila serogroup 3,” Journal of Clinical Microbiology, vol. 28, no. 2, pp. 242–245, 1990.
[30]
A. Mencacci, C. Corbucci, A. Castellani, P. Furno, F. Bistoni, and A. Vecchiarelli, “Legionella pneumophila serogroup 3 pneumonia in a patient with low-grade 4 non-Hodgkin lymphoma: a case report,” Journal of Medical Case Reports, vol. 5, pp. 387–391, 2011.
[31]
M. H. Nguyen, J. E. Stout, and V. L. Yu, “Legionellosis,” Infectious disease clinics of North America, vol. 5, no. 3, pp. 561–584, 1991.