Supermassive black holes (SMBHs) may not always reside right at the centers of their host galaxies. This is a prediction of numerical relativity simulations, which imply that the newly formed single SMBH, after binary coalescence in a galaxy merger, can receive kick velocities up to several 1000?km/s due to anisotropic emission of gravitational waves. Long-lived oscillations of the SMBHs in galaxy cores, and in rare cases even SMBH ejections from their host galaxies, are the consequence. Observationally, accreting recoiling SMBHs would appear as quasars spatially and/or kinematically offset from their host galaxies. The presence of the “kicks” has a wide range of astrophysical implications which only now are beginning to be explored, including consequences for black hole and galaxy assembly at the epoch of structure formation, black hole feeding, and unified models of active galactic nuclei (AGN). Here, we review the observational signatures of recoiling SMBHs and the properties of the first candidates which have emerged, including follow-up studies of the candidate recoiling SMBH of SDSSJ092712.65+294344.0. 1. Introduction Interaction and merging of galaxies occurs frequently throughout the history of the universe. If both galaxies do harbor SMBHs, binaries will inevitably form [1]. Galaxy mergers are believed to be the sites of major black hole growth, and an active search for SMBH pairs and binaries of wide and small separations is currently ongoing (see [2] for a review of electromagnetic signatures). When the two SMBHs ultimately coalesce, they are a source of strong gravitational waves. These are emitted anisotropically during coalescence and carry away linear momentum (e.g., [3]). As a result, the newly formed single SMBH recoils. Configurations of coalescing black holes can lead to kick velocities up to several thousand km/s (e.g., [4–16]; review by [17]). In the initial computations, kick velocity was highest for maximally spinning equal-mass black hole binaries with antialigned spins in the orbital plane (“superkicks”). More recently, based on a new recoil formula, Lousto and Zlochower [18] have estimated that recoil velocities up to 5000?km/s can be reached in configurations with spins partially aligned with the orbital angular momentum. In unbound encounters (not likely to occur in astrophysical environments), the kick velocity can exceed 15?000?km/s [19, 20]. After the kick, the recoiling SMBH will oscillate about the core of its host galaxy [21, 22] or will even escape, if its kick velocity exceeds the escape velocity of its host. In a
References
[1]
M. C. Begelman, R. D. Blandford, and M. J. Rees, “Massive black hole binaries in active galactic nuclei,” Nature, vol. 287, no. 5780, pp. 307–309, 1980.
[2]
S. Komossa, “Observational evidence for binary black holes and active double nuclei,” Memorie della Società Astronomica Italiana, vol. 77, p. 733, 2006.
[3]
J.D. Bekenstein, “Gravitational-radiation recoil and runaway black holes,” The Astrophysical Journal, vol. 183, pp. 657–664, 1973.
[4]
M. Campanelli, C. Lousto, Y. Zlochower, and D. Merritt, “Large merger recoils and spin flips from generic black hole binaries,” The Astrophysical Journal, vol. 659, no. 1, pp. L5–L8, 2007.
[5]
M. Campanelli, C. O. Lousto, H. Nakano, and Y. Zlochower, “Comparison of numerical and post-Newtonian waveforms for generic precessing black-hole binaries,” Physical Review D, vol. 79, no. 8, Article ID 084010, 2009.
[6]
J. A. González, M. Hannam, U. Sperhake, B. Brügmann, and S. Husa, “Supermassive recoil velocities for binary black-hole mergers with antialigned spins,” Physical Review Letters, vol. 98, no. 23, Article ID 231101, 2007.
[7]
J. A. González, U. Sperhake, and B. Brügmann, “Black-hole binary simulations: the mass ratio 10?:?1,” Physical Review D, vol. 79, no. 12, Article ID 124006, 2009.
[8]
F. Herrmann, I. Hinder, D. M. Shoemaker, P. Laguna, and R. A. Matzner, “Binary black holes: spin dynamics and gravitational recoil,” Physical Review D, vol. 76, no. 8, Article ID 084032, 2007.
[9]
J. G. Baker, W. D. Boggs, J. Centrella et al., “Modeling kicks from the merger of generic black hole binaries,” The Astrophysical Journal, vol. 682, no. 1, pp. L29–L32, 2008.
[10]
B. Brügmann, J. A. González, M. Hannam, S. Husa, and U. Sperhake, “Exploring black hole superkicks,” Physical Review D, vol. 77, no. 12, Article ID 124047, 2008.
[11]
S. Dain, C. O. Lousto, and Y. Zlochower, “Extra-large remnant recoil velocities and spins from near-extremal-Bowen- York-spin black-hole binaries,” Physical Review D, vol. 78, no. 2, Article ID 024039, 2008.
[12]
S. H. Miller and R. A. Matzner, “Multipole analysis of kicks in collision of spinning binary black holes,” General Relativity and Gravitation, vol. 41, no. 3, pp. 525–539, 2009.
[13]
C. O. Lousto and Y. Zlochower, “Modeling gravitational recoil from precessing highly spinning unequal-mass black-hole binaries,” Physical Review D, vol. 79, no. 6, Article ID 064018, 2009.
[14]
A. Le Tiec, L. Blanchet, and C. M. Will, “The gravitational-wave recoil from the ringdown phase of coalescing black hole binaries,” Classical and Quantum Gravity, vol. 27, no. 1, Article ID 012001, 2010.
[15]
C. O. Lousto, M. Campanelli, Y. Zlochower, and H. Nakano, “Remnant masses, spins and recoils from the merger of generic black hole binaries,” Classical and Quantum Gravity, vol. 27, no. 11, Article ID 114006, 2010.
[16]
C. O. Lousto and Y. Zlochower, “Modeling maximum astrophysical gravitational recoil velocities,” Physical Review D, vol. 83, no. 2, 2011.
[17]
J. Centrella, J. G. Baker, B. J. Kelly, and J. R. van Meter, “Black-hole binaries, gravitational waves, and numerical relativity,” Reviews of Modern Physics, vol. 82, no. 4, pp. 3069–3119, 2010.
[18]
C. Lousto and Y. Zlochower, “Hangup kicks: still larger recoils by partial spin/orbit alignment of black-hole binaries,” Physical Review Letters, vol. 107, Article ID 231102, 2011.
[19]
J. Healy, F. Herrmann, I. Hinder, D. M. Shoemaker, P. Laguna, and R. A. Matzner, “Superkicks in hyperbolic encounters of binary black holes,” Physical Review Letters, vol. 102, no. 4, Article ID 041101, 2009.
[20]
U. Sperhake, E. Berti, V. Cardoso, F. Pretorius, and N. Yunes, “Superkicks in ultrarelativistic encounters of spinning black holes,” Physical Review D, vol. 83, no. 2, Article ID 024037, 2011.
[21]
P. Madau and E. Quataert, “The effect of gravitational-wave recoil on the demography of massive black holes,” The Astrophysical Journal, vol. 606, no. 1, pp. L17–L20, 2004.
[22]
A. Gualandris and D. Merritt, “Ejection of supermassive black holes from galaxy cores,” The Astrophysical Journal, vol. 678, no. 2, pp. 780–797, 2008.
[23]
S. Komossa and D. Merritt, “Gravitational wave recoil oscillations of black holes: implications for unified models of active galactic nuclei,” The Astrophysical Journal, vol. 689, no. 2, pp. L89–L92, 2008.
[24]
P. Madau, M. J. Rees, M. Volonteri, F. Haardt, and S. P. Oh, “Early reionization by miniquasars,” The Astrophysical Journal, vol. 604, no. 2, pp. 484–494, 2004.
[25]
D. Merritt, M. Milosavljevi?, M. Favata, S. A. Hughes, and D. E. Holz, “Consequences of gravitational radiation recoil,” The Astrophysical Journal, vol. 607, no. 1, pp. L9–L12, 2004.
[26]
N. I. Libeskind, S. Cole, C. S. Frenk, and J. C. Helly, “The effect of gravitational recoil on black holes forming in a hierarchical universe,” Monthly Notices of the Royal Astronomical Society, vol. 368, no. 3, pp. 1381–1391, 2006.
[27]
A. Loeb, “Observable signatures of a black hole ejected by gravitational-radiation recoil in a Galaxy merger,” Physical Review Letters, vol. 99, no. 4, Article ID 041103, 2007.
[28]
L. Blecha and A. Loeb, “Effects of gravitational-wave recoil on the dynamics and growth of supermassive black holes,” Monthly Notices of the Royal Astronomical Society, vol. 390, no. 4, pp. 1311–1325, 2008.
[29]
M. Volonteri and P. Madau, “Off-nuclear AGNs as a signature of recoiling massive black holes,” The Astrophysical Journal, vol. 687, no. 2, Article ID 10.1086/593353, p. L57, 2008.
[30]
F. K. Liu, D. Wang, and X. Chen, “Recoiling supermassive black holes in spin-flip radio galaxies,” The Astrophysical Journal, http://arxiv.org/abs/1112.1081.
[31]
D. Merritt, T. Storchi-Bergmann, A. Robinson, D. Batcheldor, D. Axon, and R. C. Fernandes, “The nature of the HE0450-2958 system,” Monthly Notices of the Royal Astronomical Society, vol. 367, no. 4, pp. 1746–1750, 2006.
[32]
B. M. Peterson, “The masses of black holes in active galactic nuclei,” in Proceedings of the Central Engine of Active Galactic Nuclei, vol. 373 of ASP Conference Series, p. 3, Jioatong University, October 2006.
[33]
E. W. Bonning, G. A. Shields, and S. Savliander, “Recoiling black holes in quasars,” The Astrophysical Journal, vol. 666, no. 1, pp. L13–L16, 2007.
[34]
S. Komossa, H. Zhou, and H. Lu, “A recoiling supermassive black hole in the quasar SDSS J092712.65+294344.0?” The Astrophysical Journal, vol. 678, no. 2, pp. L81–L84, 2008.
[35]
M. Eracleous, T. A. Boroson, J. P. Halpern, and J. Liu, “A large systematic search for recoiling and close supermassive binary black holes,” http://arxiv.org/abs/1106.2952.
[36]
F. K. Liu, X. B. Wu, and S. L. Cao, “Double-double radio galaxies: remnants of merged supermassive binary black holes,” Monthly Notices of the Royal Astronomical Society, vol. 340, no. 2, pp. 411–416, 2003.
[37]
M. Milosavljevi? and E. S. Phinney, “The afterglow of massive black hole coalescence,” The Astrophysical Journal, vol. 622, no. 2, pp. L93–L96, 2005.
[38]
M. Ponce, J.A. Faber, and J.C. Lombardi, “Accretion disks around kicked black holes: post-kick dynamics,” The Astrophysical Journal, http://arxiv.org/abs/1107.1711, vol. 745, p. 71, 2012.
[39]
Z. Lippai, Z. Frei, and Z. Haiman, “Prompt shocks in the gas disk around a recoiling supermassive black hole binary,” The Astrophysical Journal Letters, vol. 676, no. 1, pp. L5–L8, 2008.
[40]
G. A. Shields and E. W. Bonning, “Powerful flares from recoiling black holes in quasars,” The Astrophysical Journal, vol. 682, no. 2, pp. 758–766, 2008.
[41]
J. D. Schnittman and J. H. Krolik, “The infrared afterglow of supermassive black hole mergers,” The Astrophysical Journal, vol. 684, no. 2, pp. 835–844, 2008.
[42]
M. Megevand, M. Anderson, J. Frank et al., “Perturbed disks get shocked: Binary black hole merger effects on accretion disks,” Physical Review D, vol. 80, no. 2, Article ID 024012, 2009.
[43]
E. M. Rossi, G. Lodato, P. J. Armitage, J. E. Pringle, and A. R. King, “Black hole mergers: the first light,” Monthly Notices of the Royal Astronomical Society, vol. 401, no. 3, pp. 2021–2035, 2010.
[44]
L. R. Corrales, Z. Haiman, and A. MacFadyen, “Hydrodynamical response of a circumbinary gas disc to black hole recoil and mass loss,” Monthly Notices of the Royal Astronomical Society, vol. 404, no. 2, pp. 947–962, 2010.
[45]
T. Tanaka, Z. Haiman, and K. Menou, “Witnessing the birth of a quasar,” Astronomical Journal, vol. 140, no. 2, pp. 642–651, 2010.
[46]
O. Zanotti, C. Roedig, L. Rezzolla, and L. del Zanna, “General relativistic radiation hydrodynamics of accretion flows—I. Bondi-Hoyle accretion,” Monthly Notices of the Royal Astronomical Society, vol. 417, no. 4, pp. 2899–2915, 2011.
[47]
S. Komossa and N. Bade, “The giant X-ray outbursts in NGC 5905 and IC 3599: follow-up observations and outburst scenarios,” Astronomy and Astrophysics, vol. 343, no. 3, pp. 775–787, 1999.
[48]
J. S. Bloom, D. Giannios, B. D. Metzger et al., “A possible relativistic jetted outburst from a massive black hole fed by a tidally disrupted star,” Science, vol. 333, no. 6039, pp. 203–206, 2011.
[49]
S. Komossa and D. Merritt, “Tidal disruption flares from recoiling supermassive black holes,” The Astrophysical Journal, vol. 683, no. 1, pp. L21–L24, 2008.
[50]
N. Stone and A. Loeb, “Prompt tidal disruption of stars as an electromagnetic signature of supermassive black hole coalescence,” Monthly Notices of the Royal Astronomical Society, vol. 412, no. 1, pp. 75–80, 2011.
[51]
X. Chen, P. Madau, A. Sesana, and F. K. Liu, “Enhanced tidal disruption rates from massive black hole binaries,” The Astrophysical Journal, vol. 697, no. 2, pp. L149–L152, 2009.
[52]
D. Merritt, J. D. Schnittman, and S. Komossa, “Hypercompact stellar systems around recoiling supermassive black holes,” The Astrophysical Journal, vol. 699, no. 2, pp. 1690–1710, 2009.
[53]
R. M. O'Leary and A. Loeb, “Star clusters around recoiled black holes in the Milky Way halo,” Monthly Notices of the Royal Astronomical Society, vol. 395, no. 2, pp. 781–786, 2009.
[54]
K. Holley-Bockelmann, K. Gültekin, D. Shoemaker, and N. Yunes, “Gravitational wave recoil and the retention of intermediate-mass black holes,” The Astrophysical Journal, vol. 686, no. 2, pp. 829–837, 2008.
[55]
R. M. O’Leary and A. Loeb, “Recoiled star clusters in the Milky Way halo: N-body simulations and a candidate search through SDSS,” http://arxiv.org/abs/1102.3695.
[56]
D. A. Kornreich and R. V. E. Lovelace, “Dynamics of kicked and accelerated massive black holes in galaxies,” The Astrophysical Journal, vol. 681, no. 1, pp. 104–112, 2008.
[57]
B. Devecchi, E. Rasia, M. Dotti, M. Volonteri, and M. Colpi, “Imprints of recoiling massive black holes on the hot gas of early-type galaxies,” Monthly Notices of the Royal Astronomical Society, vol. 394, no. 2, pp. 633–640, 2009.
[58]
Y. Fujita, “Long-term evolution of and X-ray emission from a recoiling supermassive black hole in a disk galaxy,” The Astrophysical Journal, vol. 691, no. 2, pp. 1050–1057, 2009.
[59]
R. De La Fuente Marcos and C. De La Fuente Marcos, “The invisible hand: star formation triggered by runaway black holes,” The Astrophysical Journal, vol. 677, no. 1, pp. L47–L50, 2008.
[60]
J. D. Schnittman and A. Buonanno, “The distribution of recoil velocities from merging black holes,” The Astrophysical Journal, vol. 662, no. 2, pp. L63–L66, 2007.
[61]
M. Kesden, U. Sperhake, and E. Berti, “Relativistic suppression of black hole recoils,” The Astrophysical Journal, vol. 715, no. 2, pp. 1006–1011, 2010.
[62]
M. Volonteri, M. Sikora, and J. P. Lasota, “Black hole spin and galactic morphology,” The Astrophysical Journal, vol. 667, no. 2, pp. 704–713, 2007.
[63]
P. A. G. Scheuer and R. Feiler, “The realignment of a black hole misaligned with its accretion disc,” Monthly Notices of the Royal Astronomical Society, vol. 282, no. 1, pp. 291–294, 1996.
[64]
P. Natarajan and P. J. Armitage, “Warped discs and the directional stability of jets in active galactic nuclei,” Monthly Notices of the Royal Astronomical Society, vol. 309, no. 4, pp. 961–968, 1999.
[65]
T. Bogdanovi?, C. S. Reynolds, and M. C. Miller, “Alignment of the spins of supermassive black holes prior to coalescence,” The Astrophysical Journal, vol. 661, no. 2, pp. L147–L150, 2007.
[66]
A. Perego, M. Dotti, M. Colpi, and M. Volonteri, “Mass and spin co-evolution during the alignment of a black hole in a warped accretion disc,” Monthly Notices of the Royal Astronomical Society, vol. 399, no. 4, pp. 2249–2263, 2009.
[67]
M. Dotti, M. Volonteri, A. Perego, M. Colpi, M. Ruszkowski, and F. Haardt, “Dual black holes in merger remnants-II. Spin evolution and gravitational recoil,” Monthly Notices of the Royal Astronomical Society, vol. 402, no. 1, pp. 682–690, 2010.
[68]
G. A. Shields, E. W. Bonning, and S. Salviander, “Comment on the black hole recoil candidate quasar SDSS J092712.65+294344.0,” The Astrophysical Journal, vol. 696, no. 2, pp. 1367–1373, 2009.
[69]
T. M. Heckman, J. H. Krolik, S. M. Moran, J. Schnittman, and S. Gezari, “SDSSJ092712.65+294344.0: NGC 1275 at ?” The Astrophysical Journal, vol. 695, no. 1, article 363, 2009.
[70]
M. Dotti, C. Montuori, R. Decarli, M. Volonteri, M. Colpi, and F. Haardt, “SDSSJ092712.65+294344.0: a candidate massive black hole binary,” Monthly Notices of the Royal Astronomical Society, vol. 398, no. 1, pp. L73–L77, 2009.
[71]
T. Bogdanovi?, M. Eracleous, and S. Sigurdsson, “SDSS J092712.65+294344.0: recoiling black hole or a subparsec binary candidate?” The Astrophysical Journal, vol. 697, no. 1, pp. L288–L292, 2009.
[72]
R. Decarli, M. T. Reynolds, and M. Dotti, “A photometric study of the field around the candidate recoiling/binary black hole SDSS J092712.65+294344.0,” Monthly Notices of the Royal Astronomical Society, vol. 397, no. 1, pp. 458–466, 2009.
[73]
M. Vivek, R. Srianand, P. Noterdaeme, V. Mohan, and V. C. Kuriakose, “SDSS J092712.64+294344.0: recoiling blackhole or merging galaxies?” Monthly Notices of the Royal Astronomical Society, vol. 400, no. 1, pp. L6–L9, 2009.
[74]
A. Robinson, S. Young, D. J. Axon, P. Kharb, and J. E. Smith, “Spectropolarimetric evidence for a kicked supermassive black hole in the quasar E1821+643,” The Astrophysical Journal, vol. 717, no. 2, pp. L122–L126, 2010.
[75]
G. A. Shields, D. J. Rosario, K. L. Smith et al., “The quasar SDSS J105041.35+345631.3: black hole recoil or extreme double-peaked emitter?” The Astrophysical Journal, vol. 707, no. 2, pp. 936–941, 2009.
[76]
M. Elvis, in Proceedings of the BAAS, vol. 41, p. 708, 2009.
[77]
J. M. Comerford, R. L. Griffith, B. F. Gerke et al., “1.75?h -1 kpc separation dual active galactic nuclei at z = 0.36 in the cosmos field,” The Astrophysical Journal, vol. 702, no. 1, pp. L82–L86, 2009.
[78]
F. Civano, M. Elvis, G. Lanzuisi et al., “A runaway black hole in cosmos: gravitational wave or slingshot recoil?” The Astrophysical Journal, vol. 717, no. 1, pp. 209–222, 2010.
[79]
D. Batcheldor, A. Robinson, D. J. Axon, E. S. Perlman, and D. Merritt, “A displaced supermassive black hole in M87,” The Astrophysical Journal, vol. 717, pp. L6–L10, 2010.
[80]
P. G. Jonker, M. A. P. Torres, A. C. Fabian, M. Heida, G. Miniutti, and D. Pooley, “A bright off-nuclear X-ray source: a type IIn supernova, a bright ULX or a recoiling supermassive black hole in CXO J122518.6+144545,” Monthly Notices of the Royal Astronomical Society, vol. 407, no. 1, pp. 645–650, 2010.
[81]
J. M. Bellovary, F. Governato, T. R. Quinn, J. Wadsley, S. Shen, and M. Volonteri, “Wandering black holes in bright disk galaxy halos,” The Astrophysical Journal, vol. 721, no. 2, pp. L148–L152, 2010.
[82]
B. A. Keeney, J. T. Stocke, C. W. Danforth, and C. L. Carilli, “The quasar/galaxy pair PKS 1327-206/ESO 1327-2041: absorption associated with a recent galaxy merger,” Astronomical Journal, vol. 141, no. 2, article 66, 2011.
[83]
D. Sijacki, V. Springel, and M. G. Haehnelt, “Gravitational recoils of supermassive black holes in hydrodynamical simulations of gas-rich galaxies,” Monthly Notices of the Royal Astronomical Society, vol. 414, no. 4, pp. 3656–3670, 2011.
[84]
G. Hasinger, “Absorption properties and evolution of active galactic nuclei,” Astronomy and Astrophysics, vol. 490, no. 3, pp. 905–922, 2008.
[85]
H. Hao, M. Elvis, F. Civano, and A. Lawrence, “Hot-dust-poor quasars in mid-infrared and optically selected samples,” The Astrophysical Journal, vol. 733, no. 2, article 108, 2011.
[86]
Z. Haiman, “Constraints from gravitational recoil on the growth of supermassive black holes at high redshift,” The Astrophysical Journal, vol. 613, no. 1, pp. 36–40, 2004.
[87]
M. Boylan-Kolchin, C. P. Ma, and E. Quataert, “Core formation in galactic nuclei due to recoiling black holes,” The Astrophysical Journal, vol. 613, no. 1, pp. L37–L40, 2004.
[88]
J. D. Schnittman and A. Buonanno, “The distribution of recoil velocities from merging black holes,” The Astrophysical Journal, vol. 662, no. 2, pp. L63–L66, 2007.
[89]
A. Sesana, “Extreme recoils: impact on the detection of gravitational waves from massive black hole binaries,” Monthly Notices of the Royal Astronomical Society, vol. 382, no. 1, pp. L6–L10, 2007.
[90]
T. Tanaka and Z. Haiman, “The assembly of supermassive black holes at high redshifts,” The Astrophysical Journal, vol. 696, no. 2, pp. 1798–1822, 2009.
[91]
M. Volonteri, K. Gültekin, and M. Dotti, “Gravitational recoil: effects on massive black hole occupation fraction over cosmic time,” Monthly Notices of the Royal Astronomical Society, vol. 404, no. 4, pp. 2143–2150, 2010.
[92]
M. Micic, K. Holley-Bockelmann, and S. Sigurdsson, “Growing massive black holes in a Local Group environment: the central supermassive, slowly sinking and ejected populations,” Monthly Notices of the Royal Astronomical Society, vol. 414, no. 2, pp. 1127–1144, 2011.