|
An Efficient Wireless Backhaul Utilizing MIMO Transmission and IPT ForwardingKeywords: Wireless Backhaul Networks , IEEE 802.11n , MIMO-OFDM , IPT forwarding Abstract: Wireless backhaul has been received much attention as an enabler of future broadband mobile communication systems because it can reduce deployment cost of pico-cells, an essential part of high capacity system. A high performance network, high throughput, low average delay and low packet loss rate, is highly appreciated to sustain the increasing proliferation in multimedia transmissions. The critical issue reducing the performance of wireless backhaul is the interference occurred in the network due to simultaneous nodes transmissions. In this research, we propose a high performance wireless backhaul using the low interference sensitivity MIMO based nodes. MIMO transmission has a better BER performance over SISO one even with the same transmission rate and bandwidth, which means that MIMO can operate at lower SINR values than SISO and give the same performance. This MIMO robust performance against interference gives us a greater benefit when adopted as a wireless interface in wireless backhaul than SISO. These facts motivated us to use the IEEE 802.11n the current MIMO standard to design a MIMO based wireless backhaul. In addition and to justify our assumptions, we investigate the effect of MIMO channels correlation, a major drawback in MIMO transmission, upon the system performance, and prove the robustness of the scheme under different MIMO channels correlation values. After proving the effectiveness of MIMO as a wireless interface for wireless backhaul, we further improve the performance of this MIMO-backhaul using the high efficient Intermittent Periodic Transmit (IPT) forwarding protocol. IPT is a reduced interference packet forwarding protocol with a more efficient relay performance than conventional method in which packets are transmitted continuously form the source nodes. By using these two techniques (IEEE 802.11n (MIMO) + IPT), wireless backhaul nodes can meet more demanding communication requirements such as higher throughput, lower average delay, and lower packet dropping rate than those achieved by simply applying IEEE 802.11n to conventionally relayed backhaul. The proposed wireless backhaul will accelerate introduction of picocell based mobile communication systems.
|