全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Photopolymerization Reactions: On the Way to a Green and Sustainable Chemistry

DOI: 10.3390/app3020490

Keywords: cationic photopolymerization, radical photopolymerization, photoinitiators, visible light sources, soft irradiation conditions, sunlight exposure, LED, laser diodes, household lamps, halogen lamps, renewable monomers

Full-Text   Cite this paper   Add to My Lib

Abstract:

The present paper reviews some aspects concerned with the development of green technologies in the photopolymerization area: use of visible light sources (Xe and Hg-Xe lamps, diode lasers), soft irradiation conditions (household lamps: halogen lamp, fluorescence bulbs, LED bulbs), sunlight exposure, development of very efficient photoinitiating systems and use of renewable monomers. The drawbacks/breakthroughs encountered when going on the way of a greener approach are discussed. Examples of recent achievements are presented.

References

[1]  Radiation Curing of Polymeric Materials; Hoyle, C.E., Kinstle, J.F., Eds.; American Chemical Society: Washington, DC, USA, 1990.
[2]  Lasers in Polymer Science and Technology: Applications; Fouassier, J.P., Rabek, J.F., Eds.; CRC Press: Boca Raton, FL, USA, 1990.
[3]  Pappas, S.P. UV-Curing: Science and Technology; Plenum Press: New York, NY, USA, 1992.
[4]  Radiation Curing in Polymer Science and Technology; Fouassier, J.P., Rabek, J.F., Eds.; Chapman & Hall: London, UK, 1993.
[5]  Photoresponsive Polymers; Krongauz, V., Trifunac, A., Eds.; Chapman and Hall: New York, NY, USA, 1994.
[6]  Reiser, A. Photoreactive Polymers: The Science and Technology of Resists; Wiley: New York, NY, USA, 1989.
[7]  Fouassier, J.P. Photoinitiation, Photopolymerization, Photocuring: Fundamentals and Applications; Carl Hanser GmbH: Munich, Germany, 1995.
[8]  Davidson, S. Exploring the Science, Technology and Application of UV and EB Curing; SITA Technology Ltd.: London, UK, 1999.
[9]  Neckers, D.C. UV and EB at the Millenium; SITA Technology Ltd.: London, UK, 1999.
[10]  Crivello, J.V.; Dietliker, K. Photoinitiators for Free Radical, Cationic and Anionic Photopolymerization; Bradley, G., Ed.; Surface Coatings Technology Series; Wiley: New York, NY, USA, 1999; Volume III.
[11]  Dietliker, K. A Compilation of Photoinitiators Commercially Available for UV Today; SITA Technology Ltd.: London, UK, 2002.
[12]  Belfied, K.D.; Crivello, J.V. Photoinitiated Polymerization; ACS Symp. Ser. 847; American Chemical Society: Washington, DC, USA, 2003.
[13]  Photochemistry and UV Curing; Fouassier, J.P., Ed.; Research Signpost: Trivandrum, India, 2006.
[14]  14. Photochemistry and Photophysics of Polymer Materials; Allen, N.S., Ed.; Wiley: Hoboken, NJ, USA, 2010.
[15]  Basics of Photopolymerization Reactions; Fouassier, J.P., Allonas, X., Eds.; Research Signpost: Trivandrum, India, 2010.
[16]  Green, W.A. Industrial Photoinitiators; CRC Press: Boca Raton, FL, USA, 2010.
[17]  Peiffer, R.W. Photopolymerization: Fundamentals and Applications; Scranton, A.B., Bowman, A., Eds.; ACS Symp. Ser. 673; Americal Chemical Society: Washington, DC, USA, 1997.
[18]  Handbook of Vinyl Polymers; Mishra, M.K., Yagci, Y., Eds.; CRC Press: Boca Raton, FL, USA, 2009.
[19]  Fouassier, J.P.; Lalevée, J. Photoinitiators for Polymer Synthesis: Scope, Reactivity and Efficiency; Wiley VCH: Weinheim, Germany, 2012.
[20]  Esposito Corcione, C.; Previderio, A.; Frigione, M. Kinetics characterization of a novel photopolymerizable siloxane-modified acrylic resin. Thermochim. Acta 2010, 509, 56–61, doi:10.1016/j.tca.2010.06.001.
[21]  Esposito Corcione, C.; Greco, A.; Maffezzoli, A. Photopolymerization kinetics of an epoxy-based resin for stereolithography. J. Appl. Polym. Sci. 2004, 92, 3484–3491, doi:10.1002/app.20347.
[22]  Esposito Corcione, C.; Greco, A.; Maffezzoli, A. Time–temperature and time-irradiation intensity superposition for photopolymerization of an epoxy based resin. Polymer 2005, 46, 8018–8027, doi:10.1016/j.polymer.2005.06.111.
[23]  Esposito Corcione, C.; Greco, A.; Maffezzoli, A. Temperature evolution during stereolithography building with a commercial epoxy resin. Polym. Eng. Sci. 2006, 46, 493–502, doi:10.1002/pen.20488.
[24]  Greco, A.; Esposito Corcione, C.; Cavallo, A.; Maffezzoli, A. Influence of stone particles on the rheological behavior of a novel photopolymerizable siloxane-modified acrylic resin. J. Appl. Polym. Sci. 2011, 122, 942–947, doi:10.1002/app.34201.
[25]  Frigione, M.; Esposito Corcione, C. Rheological and kinetic characterization of UV photopolymerizable formulations as a function of the boehmite nanoparticle content. Open Mater. Sci. J. 2012, 6, 68–76, doi:10.2174/1874088X01206010068.
[26]  Esposito Corcione, C.; Frigione, M. Factors influencing photo curing kinetics of novel UV-cured siloxane-modified acrylic coatings: Oxygen inhibition and composition. Thermochim. Acta 2012, 534, 21–27, doi:10.1016/j.tca.2012.01.023.
[27]  Yilmaz, G.; Iskin, B.; Yilmaz, F.; Yagci, Y. Mesoporous graphitic carbon nitride as a heterogeneous visible light photoinitiator for radical polymerization. ACS Macro Lett. 2012, 1, 1212–1215, doi:10.1021/mz3004743.
[28]  Karaka-Balta, D.; Temel, G.; Okal, N.; Arsu, N. Thioxanthone–diphenyl anthracene: Visible light photoinitiator. Macromolecules 2012, 45, 119–125, doi:10.1021/ma202168m.
[29]  Yilmaz, G.; Acik, G.; Yagci, Y. Counteranion sensitization spproach to photoinitiated free radical polymerization. Macromolecules 2012, 45, 2219–2224, doi:10.1021/ma3000169.
[30]  Kumbaraci, V.; Aydogan, B.; Talinli, N.; Yagci, Y. Naphthodioxinone-1,3-benzodioxole as photochemically masked one-component Type II photoinitiator for free radical polymerization. J. Polym. Sci. Part A 2012, 50, 2612–2618.
[31]  Temel, G.; Enginol, B.; Aydin, M.; Karaca Balta, D.; Arsu, N. Photopolymerization and photophysical properties of amine linked benzophenone photoinitiator for free radical polymerization. J. Photochem. Photobiol. A 2011, 219, 26–31.
[32]  Keskin Dogruyol, S.; Dogruyol, Z.; Arsu, N. A thioxanthone-based visible photoinitiator. J. Polym. Sci. Part A 2011, 49, 4037–4040.
[33]  Sevinc Esen, D.; Karasu, F.; Arsu, N. The investigation of photoinitiated polymerization of multifunctional acrylates with TX-BT by Photo-DSC and RT-FTIR. Progr. Org. Coat. 2011, 70, 102–107.
[34]  Korkut, S.E.; Temel, G.; Karaca Balta, D.; Arsu, N.; Kas?m ?ener, M. Type II photoinitiator substituted zinc phthalocyanine: Synthesis, photophysical and photopolymerization studies. J. Luminescence 2013, 136, 389–394.
[35]  Asvos, X.; Siskos, M.G.; Zarkadis, A.K.; Hermann, R.; Brede, O. The 2-benzoyl xanthone/triethylamine system as a type II photoinitiator: A laser flash photolysis and computational study. J. Photochem. Photobiol. A 2011, 219, 255–264, doi:10.1016/j.jphotochem.2011.02.028.
[36]  Santos, W.G.; Schmitt, C.C.; Neumann, M.G. Polymerization of HEMA photoinitiated by the Safranine/diphenylborinate system. J. Photochem. Photobiol. A 2013, 252, 124–130.
[37]  Kitano, H.; Ramachandran, K.; Bowden, N.B.; Scranton, A.B. Unexpected visible-light-induced free radical photopolymerization at low light intensity and high viscosity using a titanocene photoinitiator. J. Appl. Polym. Sci. 2013, 128, 611–618, doi:10.1002/app.38259.
[38]  Han, J.; Wang, J.; Shen, K.; Wang, G.; Li, Y.; Zhao, D. Synthesis of novel photochromic spiropyran dyes containing quaternary ammonium salt or cinnamoyl moiety and their properties as photoinitiators. J. Appl. Polym. Sci. 2012, 126, 30–37, doi:10.1002/app.36419.
[39]  Ivan, M.G.; Scaiano, J.C. Photoimaging and Photolithographic Process in Polymers. In Handbook on Photochemistry and Photophysics of Polymer Materials; Allen, N.S., Ed.; Wiley: Hoboken, NJ, USA, 2010; pp. 479–508.
[40]  Muftuogli, A.E.; Tasdelen, M.A.; Yagci, Y. Photografting of Polymeric Materials. In Handbook on Photochemistry and Photophysics of Polymer Materials; Allen, N.S., Ed.; Wiley: Hoboken, NJ, USA, 2010; pp. 509–540.
[41]  Yang, J.; Shi, S.; Xu, F.; Nie, J. Synthesis and photopolymerization kinetics of benzophenone sesamol one-component photoinitiator. Photochem. Photobiol. Sci. 2013, 12, 323–329, doi:10.1039/c2pp25241d.
[42]  Rosspeintner, A.; Griesser, M.; Pucher, N.; Iskra, K.; Liska, R.; Gescheidt, G. Toward the photoinduced reactivity of 1,5-diphenylpenta-1,4-diyn-3-one (DPD): Real-time investigations by magnetic resonance. Macromolecules 2009, 42, 8034–8038, doi:10.1021/ma901570h.
[43]  Moszner, N.; Lamparth, I.; Angermann, J.; Fischer, U.K.; Zeuner, F.; Bock, T.; Liska, R.; Rheinberger, V. Synthesis of bis(3-{[2-(allyloxy)ethoxy]methyl}-2,4,6-trimethylbenzoyl)(phenyl)phosphine oxide—A tailor-made photoinitiator for dental adhesives. Beilstein J. Org. Chem. 2010, 6, 1–9.
[44]  Dworak, C.; Kopeinig, S.; Hoffmann, H.; Liska, R. Photoinitiating monomers based on di- and triacryloylated hydroxylamine derivatives. J. Polym. Sci. Part A 2009, 47, 392–403, doi:10.1002/pola.23156.
[45]  Li, Z.; Siklos, M.; Pucher, N.; Cicha, K.; Ajami, A.; Husinsky, W.; Rosspeintner, A.; Vauthey, E.; Gescheidt, G.; Stampfl, J.; et al. Synthesis and structure-activity relationship of several aromatic ketone-based two-photon initiators. J. Polym. Sci. Part A 2011, 49, 3688–3699, doi:10.1002/pola.24806.
[46]  Yagci, Y.; Jockusch, S.; Turro, N.J. Photoinitiated polymerization: advances, challenges, and opportunities. Macromolecules 2010, 43, 6245–6260.
[47]  Kabatc, J.; Jurek, K. Free radical formation in three-component photoinitiating systems. Polymer 2012, 53, 1973–1980.
[48]  Czech, Z.; Butwin, A.; Kabatc, J. Photoreactive s-triazine as crosslinking agents for UV-crosslinkable acrylic pressure-sensitive adhesives. J. Appl. Polym. Sci. 2011, 120, 3621–3627, doi:10.1002/app.33536.
[49]  Jedrzejewska, B.; Urbanski, S. Studies on an argon laser-induced photopolymerization employing both mono- and bischromophoric hemicyanine dye-borate complex as a photoinitiator. Part III. J. Appl. Polym. Sci. 2010, 118, 1395–1405.
[50]  Kabatc, J.; Krzyzanowska, E.; Jedrzejewska, B.; Pietrzak, M.; Paczkowski, J. Novel N-ethyl-2-styrylquinolinum iodides as sensitizers in photoinitiated free radical polymerization of trimethylolopropane triacrylate (TMPTA). J. Appl. Polym. Sci. 2010, 118, 165–172.
[51]  Lalevée, J.; Tehfe, M.A.; Allonas, X.; Foussier, J.P. Photoinitiating systems based on unusual radicals. In Polymer Initiators; Ackrine, W.J., Ed.; Nova Science Publishers, Inc.: Hauppauge, NY, USA, 2010. chapter 8.
[52]  Lalevée, J.; Tehfe, M.A.; Blanchard, N.; Morlet-Savary, F.; Fouassier, J.P. Redox or photoinduced ring opening polymerization: Initiating systems based on organosilanes bearing a Si–Si bond. In Radical Polymerization: New Developments; Pauloskas, I.O., Urbonas, L.A., Eds.; Nova Science Publishers, Inc.: Hauppauge, NY, USA, 2011. chapter 7.
[53]  Fouassier, J.P.; Lalevée, J. Three-component photoinitiating systems: Towards innovative tailor made high performance combinations. Adv. Chem. 2012, 2, 2621–2629.
[54]  Lalevée, J.; Fouassier, J.P. Overview of Radical Initiation. In In Encyclopedia of Radicals in Chemistry, Biology and Materials; Studer, A., Chatgilialoglou, C., Eds.; Wiley: New York, NY, USA, 2012; Volume 1. chapter 2.
[55]  Lalevee, J.; EL Roz, M.; Allonas, X.; Fouassier, J.P. On the silyl radical chemistry in photopolymerization reactions. In Organosilanes: Properties, Performance and Applications; Wyman, E., Skief, M.C., Eds.; Nova Science Publishers: Hauppauge, NY, USA, 2009. chapter 6.
[56]  Fouassier, J.P.; Lalevée, J. Design of Chromophores for Photoinitiators of Polymerization: Brief Survey and Recent Achievements. In New Developments in Chromophore Research; Nova Science Publishers: Hauppauge, NY, USA. in press.
[57]  Lalevée, J.; Tehfe, M.A.; Dumur, F.; Gigmes, D.; Morlet-Savary, F.; Graff, B.; Fouassier, J.P. Green light induced cationic ring opening polymerization reactions: Perylene bis-dicarboximides as efficient photosensitizers. Macromol Chem. Phys. 2013, doi:10.1002/macp.201200728.
[58]  Tehfe, M.A.; Dumur, F.; Graff, B.; Clément, J.L.; Gigmes, D.; Morlet-Savary, F.; Fouassier, J.P.; Laleve?e, J. A new cleavable photoinitiator architecture with huge molar extinction coefficients for polymerization in the 340–420 nm range. Macromolecules 2013, 46, 736–746.
[59]  Lalevée, J.; El Roz, M.; Tehfe, M.A.; Allonas, X.; Fouassier, J.P. Long wavelength cationic photopolymerization in aerated media: A remarkable titanocene/tris(trimethylsilyl)silane/onium salt photoinitiating system. Macromolecules 2009, 42, 8669–8674.
[60]  Lalevée, J.; Blanchard, N.; Fries, C.; Tehfe, M.A.; Morlet-Savary, F.; Fouassier, J.P. New thioxanthone and xanthone derivative based on silyl radical chemistry. Polym. Chem. 2011, 2, 1077–1084, doi:10.1039/c0py00392a.
[61]  Tarzi, O.I.; Allonas, X.; Ley, C.; Fouassier, J.P. Pyrromethene derivatives in three-component photoinitiating systems for free radical photopolymerization. J. Polym. Sci. Part A 2010, 48, 2594–2603.
[62]  Tehfe, M.A.; Dumur, F.; Contal, E.; Graff, B.; Gigmes, D.; Morlet-Savary, F.; Fouassier, J.P.; Lalevée, J. New insights in radical and cationic polymerization upon visible light exposure: Role of novel photoinitiator systems based on the pyrene chromophore. Polym. Chem. 2013, 4, 1625–1634.
[63]  Telitel, S.; Blanchard, N.; Schweitzer, S.; Morlet-Savary, F.; Graff, B.; Fouassier, J.P.; Lalevée, J. Bodipy derivatives and boranil as new photoinitiating systems of cationic polymerization exhibiting a tunable absorption in the 400–600 nm spectral range. Polymer 2013, doi:10.1016/j.polymer.2013.02.013.
[64]  Tehfe, M.A.; Dumur, F.; Morlet-Savary, F.; Graff, B.; Fouassier, J.P.; Gigmes, D.; Lalevée, J. Trifunctional photoinitiators based on a triazine skeleton for visible light sources and UV LED induced polymerizations. Macromolecules 2012, 45, 8639–8647.
[65]  Telitel, S.; Lalevée, J.; Blanchard, N.; Kavalli, T.; Tehfe, M.A.; Morlet-Savary, F.; Graff, B.; Fouassier, J.P. Photopolymerization of cationic monomers and acrylate/divinylether blends under visible lights using pyrromethene dyes. Macromolecules 2012, 45, 6864–6868, doi:10.1021/ma301293m.
[66]  Tehfe, M.A.; Zein-Fakih, A.; Lalevée, J.; Dumur, F.; Gigmes, D.; Morlet-Savary, F.; Fouassier, J.P. Pyridinium salts: New systems for photopolymerization reactions upon visible light exposure. Eur. Polym. J. 2013, 49, 567–574.
[67]  Tehfe, M.A.; Lalevée, J.; Dumur, F.; Zein-Fakih, A.; Gigmes, D.; Morlet-Savary, F.; Fouassier, J.P. Dye photosensitized cationic ring-opening polymerization: search for new dye skeletons. Polymer 2012, 53, 4947–4954.
[68]  Tehfe, M.A.; Lalevée, J.; Fouassier, J.P. A breakthrough for long wavelength absorbing photoinitiating systems under soft irradiation conditions based on violanthrone derivatives. Macromolecules 2011, 44, 8374–8379.
[69]  Lalevée, J.; Tehfe, M.A.; Morlet-Savary, F.; Fouassier, J.P. Cationic photosensitive formulations based on the silyl radical chemistry for green and red diode laser exposure. Polym. Chem. 2012, 3, 1899–1902.
[70]  Lalevée, J.; Blanchard, N.; Tehfe, M.A.; Peter, M.; Morlet-Savary, F.; Fouassier, J.P. Household LED irradiation under air: Cationic polymerization using iridium or ruthenium complex photocatalysts. Polym. Bull. 2012, 68, 341–347, doi:10.1007/s00289-011-0541-9.
[71]  Lalevée, J.; Dumur, F.; Mayer, C.R.; Gigmes, D.; Nasr, G.; Tehfe, M.A.; Morlet-Savary, F.; Telitel, S.; Graff, B.; Fouassier, J.P. Photopolymerization of N-vinylcarbazole using visible-light harvesting iridium complexes as photoinitiators. Macromolecules 2012, doi:10.1021/ma3005229.
[72]  Tehfe, M.A.; Lalevée, J.; Telitel, S.; Sun, J.; Zhao, J.; Morlet-Savary, F.; Graff, B.; Fouassier, J.P. Iridium complexes incorporating coumarin moiety as photocatalysts for ring opening photopolymerizations. Polymer 2012, 53, 2803–2808, doi:10.1016/j.polymer.2012.05.009.
[73]  Tehfe, M.A.; Dumur, F.; Graff, B.; Morlet-Savary, F.; Gigmes, D.; Fouassier, J.P.; Lalevée, J. Design of new Type I & Type II photoinitiators possessing highly coupled pyrene-ketone moieties. Polym. Chem. 2013, 4, 2313–2324.
[74]  Tehfe, M.A.; Dumur, F.; Graff, B.; Morlet-Savary, F.; Gigmes, D.; Fouassier, J.P.; Lalevée, J. Light harvesting organic photoinitiators of polymerization. Macromol. Rapid Comm. 2013, 34, 239–245.
[75]  Tehfe, M.A.; Lalevée, J.; Morlet-Savary, F.; Graff, B.; Blanchard, N.; Fouassier, J.P. Organic photocatalyst for polymerization reactions: 9,10-bis[(triisopropylsilyl)ethynyl] anthracene. ACS Macro Lett. 2012, 1, 198–203.
[76]  Tehfe, M.A.; Lalevée, J.; Telitel, S.; Contal, E.; Dumur, F.; Gigmes, D.; Bertin, D.; Nechab, M.; Bertrand, M.; Morlet-Savary, F.; et al. Polyaromatic structures as organophotocatalysts for efficient dual radical/cationic photopolymerizations under visible lights and interpenetrated polymer networks synthesis. Macromolecules 2012, 45, 4454–4460.
[77]  Lalevée, J.; Fouassier, J.P. Recent advances in sunlight induced polymerization: Role of new photoinitiating systems based on the silyl chemistry. Polym. Chem. 2011, 2, 1107–1113, doi:10.1039/c1py00073j.
[78]  Eiselé, G.; Fouassier, J.-P.; Reeb, R. Kinetics of photocrosslinking reactions of a DCPA/EA matrix in the presence of thiols and acrylates. J. Polym. Sci. Part A 1997, 35, 2333–2345.
[79]  Bibaut-Renauld, C.; Burget, D.; Fouassier, J.-P.; Varelas, C.-G.; Thomatos, J.; Tsagaropoulos, G.; Ryrfors, L.O.; Karlsson, O.J. Use of α-diketones as visible photoinitiators for the photocrosslinking of waterborne latex paints. J. Polym. Sci. Part A 2002, 40, 3171–3181, doi:10.1002/pola.10407.
[80]  Decker, C.; Bendaikha, T. Interpenetrating polymer networks. II. Sunlight-induced polymerization of multifunctional acrylates. J. Appl. Polym. Sci. 1998, 70, 2269–2282, doi:10.1002/(SICI)1097-4628(19981212)70:11<2269::AID-APP21>3.0.CO;2-D.
[81]  Chiang, W.; Lin, W.T. Syntheses and cured films properties of UV-autocurable BTDA-based multiacrylate resins. J. Appl. Polym. Sci. 1994, 51, 1901–1909, doi:10.1002/app.1994.070511106.
[82]  Chiang, W.; Ding, F.C. Synthesis and properties of ultraviolet-curable resins via a thio–ene (thiol and allyl) addition reaction. J. Appl. Polym. Sci. 2002, 86, 1878–1885, doi:10.1002/app.11117.
[83]  Zang, H.L.; Massingilland, J.L.; Woo, J.T. Zero VOC sunlight curable coatings. J. Coat. Technol. 2000, 72, 79–81, doi:10.1007/BF02698026.
[84]  Decker, C.; Zahouily, K.; Decker, D.; Nguyen Thi Viet, T. Performance analysis of acylphosphine oxides in photoinitiated polymerization. Polymer 2001, 42, 7551–7560, doi:10.1016/S0032-3861(01)00221-X.
[85]  Paczkowska, B.; Strzelec, S.; Linden, L.A.; Packowski, D. Photochemical preparation of polymer-clay composites. J. Appl. Clay Sci. 2004, 25, 221–227.
[86]  Ledwith, A. Possibilities for promoting cationic polymerization by common sources of free radicals. Polymer 1978, 19, 1217–1219, doi:10.1016/0032-3861(78)90073-3.
[87]  Baumann, H.; Timpe, H.J. Lichtinitiierte polymer- und polymerisationsreaktionen. photoinduzierte zersetzung von diaryliodonium- und triarylsulfoniumsalzen durch benzoinderivate und benzilketale. Z. Chem. 1984, 24, 18–19, doi:10.1002/zfch.19840240104.
[88]  Yagci, Y.; Schnabel, W. Acylphosphine oxides as free radical promoters in cationic polymerizations. Makromol. Chem. Rapid Commun. 1987, 8, 209–213.
[89]  Yagci, Y.; Kminek, I.; Schnabel, W. Long wavelength photoinitiated cationic polymerization using diphenyliodonium salt and catena-poly (phenyl-4-phenylphenylsilicon). Polymer 1993, 34, 426–428.
[90]  Yagci, Y.; Ledwith, A. Mechanistic and kinetic studies on the photoinitiated polymerization of tetrahydrofuran. J. Polym. Sci. Part A 1988, 26, 1911–1918.
[91]  Crivello, J.V.; Sangermano, M. Visible and long-wavelength photoinitiated cationic polymerization. J. Polym. Sci. Part A 2001, 39, 343–356, doi:10.1002/1099-0518(20010201)39:3<343::AID-POLA1001>3.0.CO;2-J.
[92]  Dursun, C.; Degirmenci, M.; Yagci, Y.; Jockusch, S.; Turro, N.J. Free radical promoted cationic polymerization by using bisacylphosphine oxide photoinitiators: Substituent effect on the reactivity of phosphinoyl radicals. Polymer 2003, 44, 7389–7396.
[93]  Crivello, J.V. Radical-promoted visible light photoinitiated cationic polymerization of epoxides. J. Macromol. Sci. Part A 2009, 46, 474–483.
[94]  Yagci, Y.; Denizligil, S. Photoinitiated cationic polymerization using O-phthaldehyde and pyridinium salt. J. Polym. Sci. Part A 1995, 33, 1461–1464, doi:10.1002/pola.1995.080330907.
[95]  Yagci, Y.; Reetz, I. Externally stimulated initiator systems for cationic polymerization. Prog. Polym. Sci. 1998, 23, 1485–1538, doi:10.1016/S0079-6700(98)00010-0.
[96]  Bulut, U.; Gunbas, G.E.; Topare, L. A quinoxaline derivative as a long wavelength photosensitizer for diaryliodonium salts. J. Polym. Sci. Part A 2010, 48, 209–213, doi:10.1002/pola.23779.
[97]  Crivello, J.V. A new visible light sensitive photoinitiator system for the cationic polymerization of epoxides. J. Polym. Sci. Part A 2009, 47, 866–875, doi:10.1002/pola.23203.
[98]  Crivello, J.V.; Bulut, U. Curcumin: A naturally occurring long-wavelength photosensitizer for diaryliodonium salts. J. Polym. Sci. Part A 2005, 43, 5217–5321, doi:10.1002/pola.21017.
[99]  Lalevée, J.; Blanchard, N.; Tehfe, M.A.; Chany, A.C.; Morlet-Savary, F.; Fouassier, J.P. Green bulb lamp induced cationic photopolymerization reactions under air. Macromolecules 2010, 43, 10191–10195, doi:10.1021/ma1023318.
[100]  Lalevée, J.; Tehfe, M.A.; Morlet-Savary, F.; Graff, B.; Allonas, X.; Fouassier, J.P. Oxygen mediated and wavelength tunable cationic photopolymerization reactions under air and low Intensity: A new concept. Progr. Organ. Coat. 2011, 70, 23–31.
[101]  Tehfe, M.A.; Lalevée, J.; Gigmes, D.; Fouassier, J.P. Green Chemistry: sunlight induced cationic polymerization of renewable epoxy monomer under air. Macromolecules 2010, 43, 1364–1370, doi:10.1021/ma9025702.
[102]  Tehfe, M.A.; Blanchard, N.; Fries, C.; Lalevée, J.; Allonas, X.; Fouassier, J.P. Bis(germyl)ketones: Toward a new class of type I photoinitiating systems under visible light irradiation. Macromol. Rapid Comm. 2010, 31, 473–478, doi:10.1002/marc.200900695.
[103]  Telitel, S.; Schweitzer, S.; Morlet-Savary, F.; Graff, B.; Tschamber, T.; Blanchard, N.; Fouassier, J.P.; Lelli, M.; Lac?te, E.; Lalevée, J. Soft photopolymerizations initiated by dye-sensitized formation of NHC-boryl radicals under visible lights. Macromolecules 2013, 46, 43–48, doi:10.1021/ma302009p.
[104]  Lalevée, J.; Tehfe, M.A.; Zein-Fakih, A.; Ball, B.; Telitel, S.; Morlet-Savary, F.; Graff, B.; Fouassier, J.P. N-vinylcarbazole: an additive for free radical promoted cationic polymerization upon visible-light. ACS Macro Lett. 2012, 1, 802–806, doi:10.1021/mz3002325.
[105]  Tehfe, M.-A.; Lalevée, J.; Morlet-Savary, F.; Graff, B.; Fouassier, J.-P. On the use of bis(cyclopentadienyl)titanium(IV) dichloride in visible light induced ring opening photopolymerization. Macromolecules 2011, 44, 8374–8379, doi:10.1021/ma2017265.
[106]  Lalevée, J.; Tehfe, M.-A.; Dumur, F.; Gigmes, D.; Blanchard, N.; Morlet-Savary, F.; Fouassier, J.-P. Iridium photocatalysts in free radical polymerization under visible lights. ACS Macro Lett. 2012, 1, 286–290, doi:10.1021/mz2001753.
[107]  Tehfe, M.-A.; Lalevée, J.; Morlet-Savary, F.; Graff, B.; Blanchard, N.; Fouassier, J.-P. Tunable Organophotocatalysts for polymerization reactions under visible lights, macromolecules. Macromolecules 2012, 45, 1746–1752.
[108]  Nicewicz, D.A.; MacMillan, D.W.C. Merging photoredox catalysis with organocatalysis: The direct asymmetric alkylation of aldehydes. Science 2008, 322, 77–80, doi:10.1126/science.1161976.
[109]  Shih, H.-W.; Vander Wal, M.N.; Grange, R.L.; MacMillan, D.W.C. Enantioselective α-benzylation of aldehydes via photoredox organocatalysis. J. Am. Chem. Soc. 2010, 132, 13600–13603.
[110]  Zeitler, K. Photoredox catalysis with visible light. Angew. Chem. Int. Ed. 2009, 48, 9785–9789, doi:10.1002/anie.200904056.
[111]  Narayanam, J.M.R.; Stephenson, C.R.J. Visible light photoredox catalysis: Applications in organic synthesis. Chem. Soc. Rev. 2011, 40, 102–113.
[112]  Dai, C.; Narayanam, J.M.R.; Stephenson, C.R.J. Visible-light-mediated conversion of alcohols to halides. Nat. Chem. 2011, 3, 140–145.
[113]  Ischay, M.A.; Lu, Z.; Yoon, T.P. [2+2] cycloadditions by oxidative visible light photocatalysis. J. Am. Chem. Soc. 2010, 132, 8572–8574, doi:10.1021/ja103934y.
[114]  Yoon, T.P.; Ischay, M.A.; Du, J. Visible light photocatalysis as a greener approach to photochemical synthesis. Nat. Chem. 2010, 2, 527–532, doi:10.1038/nchem.687.
[115]  Larraufie, M.H.; Pellet, R.; Fensterbank, L.; Goddard, J.P.; Lac?te, E.; Malacria, M.; Ollivier, C. Visible-light-induced photoreductive generation of radicals from epoxides and aziridines. Angew. Chem. Int. Ed. 2011, 50, 4463–4466.
[116]  Courant, T.; Masson, G. Photoredox-initiated α-alkylation of imines through a three-component radical/cationic reaction. Chem. Eur. J. 2012, 18, 423–427, doi:10.1002/chem.201103062.
[117]  Zhang, G.; Song, I.Y.; Ahn, K.H.; Park, T.; Choi, W. Free radical polymerization initiated and controlled by visible light photocatalysis at ambient temperature. Macromolecules 2011, 44, 7594–7599, doi:10.1021/ma201546c.
[118]  Pelletier, H.; Belgacem, N.; Gandini, A. Acrylated vegetable oils as photocrosslinkable materials. J. Appl. Polym. Sci. 2006, 99, 3218–3221, doi:10.1002/app.22322.
[119]  Durmaz, Y.Y.; Karagoz, B.; Bicak, N.; Yagci, Y. Synthesis of block copolymers by combination of ATRP and photoiniferter processes. Polym. Intern. 2008, 57, 1182–1187, doi:10.1002/pi.2462.
[120]  Dworak, C.; Koch, T.; Varga, F.; Liska, R. Photopolymerization of biocompatible phosphorus-containing vinyl esters and vinyl carbamates. J. Polym. Sci. Part A 2010, 48, 2916–2924, doi:10.1002/pola.24072.
[121]  Nagata, M.; Inaki, K. Biodegradable and photocurable multiblock copolymers with shape-memory properties from poly(ε-caprolactone) diol, poly(ethylene glycol), and 5-cinnamoyloxyisophthalic acid. J. Appl. Polym. Sci. 2011, 120, 3556–3564, doi:10.1002/app.33531.
[122]  Jabbari, E.; He, X. Synthesis and characterization of bioresorbable in situ crosslinkable ultra low molecular weight poly(lactide) macromer. J. Mater. Sci. Mater. Med. 2008, 19, 311–318, doi:10.1007/s10856-006-0020-2.
[123]  Bayramo?lu, G.; Kayaman-Apohan, N.; Vezir Kahraman, M.; Karadenizli, S.; Erdem Kuruca, S.; Güng?r, A. Preparation of bow tie–type methacrylated poly(caprolactone-co-lactic acid) scaffolds: Effect of collagen modification on cell growth. Polym. Adv. Techn. 2012, 23, 1403–1413, doi:10.1002/pat.2059.
[124]  Schuster, M.; Turecek, C.; Weigel, G.; Saf, R.; Stampfl, J.; Varga, F.; Liska, R. Vinyl esters: Low cytotoxicity monomers for the fabrication of biocompatible 3D scaffolds by lithography based additive manufacturing. J. Polym. Sci. Part A 2009, 47, 7078–7089, doi:10.1002/pola.23747.
[125]  Hedin, J.; Oestlund, A.; Nyden, M. UV induced cross-linking of starch modified with glycidyl methacrylate. Carbohydr. Polym. 2010, 79, 606–613, doi:10.1016/j.carbpol.2009.09.019.
[126]  Barrett, D.G.; Merkel, T.J.; Luft, J.C.; Yousaf, M.N. One-step syntheses of photocurable polyesters based on a renewable resource. Macromolecules 2010, 43, 9660–9667.
[127]  Jiratumnukul, N.; Itarat, R. Ultraviolet curable epoxidized sunflower oil/organo clay nanocomposite coatings. J. Appl. Polym. Sci. 2008, 110, 2164–2167, doi:10.1002/app.28551.
[128]  Shibata, M.; Teramoto, N.; Someya, Y.; Suzuki, S. Bio-based nanocomposites composed of photo-cured epoxidized soybean oil and supramolecular hydroxystearic acid nanofibers. J. Polym. Sci. Part B 2009, 47, 669–673.
[129]  Gupta, M.K.; Singh, R.P. Cationic Initiators in Photocuring Applications. In Basics of Photopolymerization Reactions; Fouassier, J.P., Allonas, X., Eds.; Research Signpost: Trivandrum, India, 2010; Volume 1, pp. 23–35.
[130]  Acosta Ortiz, R.; Prieto López, D.; Guillén Cisneros, M.L.; Rico Valverde, J.C.; Crivello, J.V. A kinetic study of the acceleration effect of substituted benzyl alcohol on the cationic photopolymerization rate of epoxidized natural oils. Polymer 2005, 46, 1535–1541.
[131]  Decker, C.; Nguyen Thi Viet, T.; Le Xuan, H. Photoréticulation de caoutchoucs fonctionnalisés: Polymérisation cationique de caoutchoucs époxydés. Eur. Polym. J. 1996, 32, 1319–1326.
[132]  Crivello, J.V.; Narajan, R.; Sternstein, S.S. Fabrication and mechanical characterization of glass fiber reinforced UV-cured composites from epoxidized vegetable oils. J. Appl Polym Sci. 1997, 64, 2073–2087.
[133]  Desroches, M.; Caillol, S.; Lapinte, V.; Auvergne, R.; Boutevin, B. Synthesis of biobased polyols by thiol?ene coupling from vegetable oils. Macromolecules 2011, 44, 2489–2500.
[134]  Raj Mahendran, A.; Wuzella, G.; Aust, N.; Kandelbauer, A. Photocrosslinkable modified vegetable oil based resin for wood surface coating application. Progr. Org. Coatings 2012, 74, 697–704.
[135]  Kollbe Ahn, B.; Sung, J.; Kim, N.; Kraft, S.; Susan Sun, X. UV-curable pressure-sensitive adhesives derived from functionalized soybean oils and rosin ester. Polym. Int. 2012, doi:10.1002/pi.4420.
[136]  Thanamongkollit, N.; Miller, K.R.; Soucek, M.D. Route to co-acrylic modified alkyd resins via a controlled polymerization technique. Progr. Org. Coat. 2012, 73, 425–434.
[137]  Teck Chye Ang, D.; Neon Gan, S. Novel approach to enhance film properties of environmentally friendly UV-curable alkyd coating using epoxidised natural rubber. Progr. Org. Coat. 2012, 73, 409–414.
[138]  Teck Chye Ang, D.; Neon Gan, S. Environment friendly UV-curable resins from palm stearin alkyds. J. Appl. Polym. Sci. 2012, 125, 306–313.
[139]  Bao, Y.; He, J.; Li, Y. Facile and efficient synthesis of hyperbranched polyesters based on renewable castor oil. Polym. Int. 2012, doi:10.1002/pi.4440.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133