Graphene grown on C-face SiC substrates using two procedures, high and low growth temperature and different ambients, was investigated using Low Energy Electron Microscopy (LEEM), X-ray Photo Electron Electron Microscopy (XPEEM), selected area Low Energy Electron Diffraction (μ-LEED) and selected area Photo Electron Spectroscopy (μ-PES). Both types of samples showed formation of μm-sized grains of graphene. The sharp (1 × 1) μ-LEED pattern and six Dirac cones observed in constant energy photoelectron angular distribution patterns from a grain showed that adjacent layers are not rotated relative to each other, but that adjacent grains in general have different azimuthal orientations. Diffraction spots from the SiC substrate appeared in μ-LEED patterns collected at higher energies, showing that the rotation angle between graphene and SiC varied. C 1s spectra collected did not show any hint of a carbon interface layer. A hydrogen treatment applied was found to have a detrimental effect on the graphene quality for both types of samples, since the graphene domain/grain size was drastically reduced. From hydrogen treated samples, μ-LEED showed at first a clear (1 × 1) pattern, but within minutes, a pattern containing strong superstructure spots, indicating the presence of twisted graphene layers. The LEED electron beam was found to induce local desorption of hydrogen. Heating a hydrogenated C-face graphene sample did not restore the quality of the original as-grown sample.
References
[1]
Hass, J.; Feng, R.; Millan-Otoya, J.E.; Li, X.; Sprinkle, M.; First, P.N.; de Heer, W.A.; Conrad, E.H.; Berger, C. The structural properties of the multilayer graphene/4H-SiC(000-1) system as determined by surface X-ray diffraction. Phys. Rev. B 2007, 75, 214109:1–214109:5.
[2]
Hass, J.; Varchon, F.; Millan-Otoya, J.E.; Sprinkle, M.; Sharma, N.; de Heer, W.A.; Berger, C.; First, P.N.; Magaud, L.; Conrad, E.H. Why multilayer graphene on 4H-SiC(000-1) behaves like a single sheet of grapheme. Phys. Rev. Lett. 2008, 100, 125504:1–125504:4.
[3]
Hass, J.; de Heer, W.A.; Conrad, E.H. The growth and morphology of epitaxial multilayer graphene. J. Phys. 2008, 20, doi:10.1088/0953-8984/20/32/323202.
[4]
Emtsev, K.V.; Speck, F.; Seyller, Th.; Ley, L.; Riley, J.D. Interaction, growth, and ordering of epitaxial graphene on SiC{0001} surfaces: A comparative photoelectron spectroscopy study. Phys. Rev. B 2008, 77, 155303:1–155303:10.
[5]
Sprinkle, M.; Siegel, D.; Hu, Y.; Hicks, J.; Tejeda, A.; Taleb-Ibrahimi, A.; le Fèvre, P.; Bertran, F.; Vizzini, S.; Enriquez, H.; Chiang, S.; Soukiassian, P.; Berger, C.; de Heer, W.A.; Lanzara, A.; Conrad, E.H. First direct observation of a nearly ideal graphene band structure. Phys. Rev. Lett. 2009, 103, 226803:1–226803:4.
[6]
Ohta, T.; Bostwick, A.; McChesney, J.L.; Seyller, T.; Horn, K.; Rotenberg, E. Interlayer interaction and electronic screening in multilayer graphene investigated with angle-resolved photoemission spectroscopy. Phys. Rev. Lett. 2007, 98, 206802:1–206802:4.
[7]
Hicks, J.; Sheppard, K.; Wang, F.; Conrad, E.H. The structure of graphene grown on the SiC(000-1) surface. J. Phys. D 2012, 45, 154002:1–154002:9.
[8]
Srivastava, T.N.; He, G.W.; Luxmi; Mende, P.C.; Feenstra, R.M.; Sun, Y. Graphene formed on SiC under various environments: Comparison of Si-face and C-face. J. Phys. D 2012, 45, 154001:1–154001:12.
[9]
Johansson, L.I.; Watcharinyanon, S.; Zakharov, A.A.; Iakimov, T.; Yakimova, R.; Virojanadara, C. Stacking of adjacent graphene layers grown on C-face SiC. Phys. Rev. B 2011, 84, 125405:1–125405:8.
[10]
de Heer, W.A.; Berger, C.; Ruan, M.; Sprinkle, M.; Li, X.; Hu, Y.; Zhang, B.; Hankinson, J.; Conrad, E.H. Large area and structured epitaxial graphene produced by confinement controlled sublimation of silicon carbide. Proc. Natl. Acad. Sci. USA 2011, 108, 16900–16905.
[11]
Riedl, C.; Coletti, C.; Iwasaki, T.; Zakharov, A.A.; Starke, U. Quasi-free-standing epitaxial graphene on SiC obtained by hydrogen intercalation. Phys. Rev. Lett. 2009, 103, 246804:1–246804:4.
[12]
Virojanadara, C.; Zakharov, A.A.; Yakimova, R.; Johansson, L.I. Buffer layer free large area bi-layer graphene on SiC(0001). Surf. Sci. 2010, 604, L4–L7, doi:10.1016/j.susc.2009.11.011.
Hassan, J.; Virojanadara, C.; Meyer, A.; Ivanov, I.G.; Flege, J.I.; Watcharinyanon, S.; Falta, J.; Johansson, L.I.; Janzén, E. Control of epitaxial graphene thickness on 4H-SiC(0001) and buffer layer removal through hydrogen intercalation. Mater. Sci. Forum 2012, 717–720, 605–608.
[15]
Hibino, H.; Kagashima, K.; Maeda, F.; Nagase, M.; Kobayashi, Y.; Yamaguchi, H. Microscopic thickness determination of thin graphite films formed on SiC from quantized oscillation in reflectivity of low-energy electrons. Phys. Rev. B 2008, 77, 075413:1–075413:7.
[16]
Mathieu, M.; Barret, N.; Rault, J.; Mi, Y.Y.; Zhang, B.; de Heer, W.A.; Berger, C.; Conrad, E.H.; Renault, O. Microscopic correlation between chemical and electronic states in epitaxial graphene on SiC(000-1). Phys. Rev. B 2011, 83, 235436:1–235436:5.
[17]
Luxmi; Srivastava, N.; He, G.; Feenstra, R.M.; Fisher, P.J. Comparison of graphene formation on C-face and Si-face SiC {0001} surfaces. Phys. Rev. B 2010, 82, 235406:1–235406:11.
[18]
Colby, R.; Bolen, M.L.; Capano, M.A.; Stach, E.A. Amorphous interface layer in thin graphite films grown on the carbon face of SiC. Appl. Phys. Lett. 2011, 99, 101904:1–101904:3.
[19]
Virojanadara, C.; Yakimova, R.; Osiecki, J.R.; Syv?j?rvi, M.; Uhrberg, R.I.G.; Johansson, L.I.; Zakharov, A.A. Substrate orientation: A way towards higher quality monolayer graphene growth on 6H-SiC(0001). Surf. Sci. 2009, 603, L87–L90, doi:10.1016/j.susc.2009.05.005.
[20]
Creeth, G.L.; Strudwick, A.J.; Sadowski, J.T.; Marows, C.H. Surface morphology and transport studies of epitaxial graphene on SiC(000-1). Phys. Rev. B 2011, 83, 195440:1–195440:4.
[21]
Ohta, T.; Beechem, T.E.; Robinson, J.T.; Kellogg, G.L. Long-range atomic ordering and variable interlayer interactions in two overlapping graphene lattices with stacking misorientations. Phys. Rev. B 2012, 85, 075415:1–075415:7.