全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

The Role of HCN Channels on Membrane Excitability in the Nervous System

DOI: 10.1155/2012/619747

Full-Text   Cite this paper   Add to My Lib

Abstract:

Hyperpolarization-activated and cyclic nucleotide-gated (HCN) channels were first reported in heart cells and are recently known to be involved in a variety of neural functions in healthy and diseased brains. HCN channels generate inward currents when the membrane potential is hyperpolarized. Voltage dependence of HCN channels is regulated by intracellular signaling cascades, which contain cyclic AMP, PIP2, and TRIP8b. In addition, voltage-gated potassium channels have a strong influence on HCN channel activity. Because of these funny features, HCN channel currents, previously called funny currents, can have a wide range of functions that are determined by a delicate balance of modulatory factors. These multifaceted features also make it difficult to predict and elucidate the functional role of HCN channels in actual neurons. In this paper, we focus on the impacts of HCN channels on neural activity. The functions of HCN channels reported previously will be summarized, and their mechanisms will be explained by using numerical simulation of simplified model neurons. 1. Introduction Hyperpolarization-activated and cyclic nucleotide-gated (HCN) channels, first identified in 1976 in the heart by Noma and Irisawa [1] and characterized by Brown and Difrancesco [2] and Weiss and his colleague [3], are cation channels that open when the membrane potential is hyperpolarized. The general structure of HCN channels resembles that of the voltage-gated K+ channels. HCN channels consist of four subunits that have six transmembrane segments [4], the canonical GYG sequence in the pore forming region, and the positively charged S4 segment [4, 5]. But the K+ permeability of HCN channels is not so selective as typical K+ channels and is permeable to Na+ [6]. Thus a typical current reversal potential of HCN channels is around ?30?mV. For voltage-dependent gating, inward movement of S4 segment in response to hyperpolarization is reported [7–9], but molecular aspects of channel opening are still unknown. For example, HCN channels require extracellular Cl? and extracellular K+ to open [4]. Cyclic-AMP-(cAMP-) binding site locates near the C terminus, and cAMP affects the voltage dependence of activation in some HCN channel isoforms [10]. Phosphatidylinositol 4,5-bisphosphate (PIP2) is also known as a modulator of HCN channels; it shifts the voltage dependence through a different mechanism from that of cAMP [11, 12]. These multifaceted features endow HCN channels to work in many functions described below. In this paper, we try to understand the physiological significance of these

References

[1]  A. Noma and H. Irisawa, “Membrane currents in the rabbit sinoatrial node cell as studied by the double microelectrode method,” Pflügers Archiv, vol. 364, no. 1, pp. 45–52, 1976.
[2]  H. Brown and D. Difrancesco, “Voltage-clamp investigations of membrane currents underlying pace-maker activity in rabbit sino-atrial node,” Journal of Physiology, vol. 308, pp. 331–351, 1980.
[3]  J. Maylie, M. Morad, and J. Weiss, “A study of pace-marker potential in rabbit sino-atrial node: measurement of potassium activity under voltage-clamp conditions,” Journal of Physiology, vol. 311, pp. 161–178, 1981.
[4]  C. W. Siu, D. K. Lieu, and R. A. Li, “HCN-encoded pacemaker channels: from physiology and biophysics to bioengineering,” Journal of Membrane Biology, vol. 214, no. 3, pp. 115–122, 2006.
[5]  M. Biel, C. Wahl-Schott, S. Michalakis, and X. Zong, “Hyperpolarization-activated cation channels: from genes to function,” Physiological Reviews, vol. 89, no. 3, pp. 847–885, 2009.
[6]  R. B. Robinson and S. A. Siegelbaum, “Hyperpolarization-activated cation currents: from molecules to physiological function,” Annual Review of Physiology, vol. 65, pp. 453–480, 2003.
[7]  J. Chen, J. S. Mitcheson, M. Lin, and M. C. Sanguinetti, “Functional roles of charged residues in the putative voltage sensor of the HCN2 pacemaker channel,” The Journal of Biological Chemistry, vol. 275, no. 46, pp. 36465–36471, 2000.
[8]  L. Vaca, J. Stieber, X. Zong, A. Ludwig, F. Hofmann, and M. Biel, “Mutations in the S4 domain of a pacemaker channel alter its voltage dependence,” FEBS Letters, vol. 479, no. 1-2, pp. 35–40, 2000.
[9]  R. M?nnikk?, F. Elinder, and H. P. Larsson, “Voltage-sensing mechanism is conserved among ion channels gated by opposite voltages,” Nature, vol. 419, no. 6909, pp. 837–841, 2002.
[10]  E. C. Emery, G. T. Young, E. M. Berrocoso, L. Chen, and P. A. McNaughton, “HCN2 ion channels play a central role in inflammatory and neuropathic pain,” Science, vol. 333, no. 6048, pp. 1462–1466, 2011.
[11]  P. Pian, A. Bucchi, A. DeCostanzo, R. B. Robinson, and S. A. Siegelbaum, “Modulation of cyclic nucleotide-regulated HCN channels by PIP2 and receptors coupled to phospholipase C,” Pflügers Archiv, vol. 455, no. 1, pp. 125–145, 2007.
[12]  S. Khurana, Z. Liu, A. S. Lewis, K. Rosa, D. Chetkovich, and N. L. Golding, “An essential role for modulation of hyperpolarization-activated current in the development of binaural temporal precision,” The Journal of Neuroscience, vol. 32, no. 8, pp. 2814–2823, 2012.
[13]  Z. Huang, M. C. Walker, and M. M. Shah, “Loss of dendritic HCN1 subunits enhances cortical excitability and epileptogenesis,” The Journal of Neuroscience, vol. 29, no. 35, pp. 10979–10988, 2009.
[14]  J. V. Halliwell and P. R. Adams, “Voltage-clamp analysis of muscarinic excitation in hippocampal neurons,” Brain Research, vol. 250, no. 1, pp. 71–92, 1982.
[15]  D. R. Stevens, R. Seifert, B. Bufe et al., “Hyperpolarization-activated channels HCN1 and HCN4 mediate responses to sour stimuli,” Nature, vol. 413, no. 6856, pp. 631–635, 2001.
[16]  W. El-Kholy, P. E. MacDonald, J. M. Fox et al., “Hyperpolarization-activated cyclic nucleotide-gated channels in pancreatic β-cell,” Molecular Endocrinology, vol. 21, no. 3, pp. 753–764, 2007.
[17]  T. Endo, E. Tarusawa, T. Notomi et al., “Dendritic Ih ensures high-fidelity dendritic spike responses of motion-sensitive neurons in rat superior colliculus,” Journal of Neurophysiology, vol. 99, no. 5, pp. 2066–2076, 2008.
[18]  T. Notomi and R. Shigemoto, “Immunohistochemical localization of Ih channel subunits, HCN1–4, in the rat brain,” Journal of Comparative Neurology, vol. 471, no. 3, pp. 241–276, 2004.
[19]  H. Huang and L. O. Trussell, “KCNQ5 channels control resting properties and release probability of a synapse,” Nature Neuroscience, vol. 14, no. 7, pp. 840–847, 2011.
[20]  J. Boyes, J. P. Bolam, R. Shigemoto, and I. M. Stanford, “Functional presynaptic HCN channels in the rat globus pallidus,” European Journal of Neuroscience, vol. 25, no. 7, pp. 2081–2092, 2007.
[21]  S. Y. Abbas, S. W. Ying, and P. A. Goldstein, “Compartmental distribution of hyperpolarization-activated cyclic-nucleotide-gated channel 2 and hyperpolarization-activated cyclic-nucleotide-gated channel 4 in thalamic reticular and thalamocortical relay neurons,” Neuroscience, vol. 141, no. 4, pp. 1811–1825, 2006.
[22]  S. E. Atkinson and S. R. Williams, “Postnatal development of dendritic synaptic integration in rat neocortical pyramidal neurons,” Journal of Neurophysiology, vol. 102, no. 2, pp. 735–751, 2009.
[23]  S. Jung, T. D. Jones, J. N. Lugo et al., “Progressive dendritic HCN channelopathy during epileptogenesis in the rat pilocarpine model of epilepsy,” The Journal of Neuroscience, vol. 27, no. 47, pp. 13012–13021, 2007.
[24]  B. E. L. Adams, C. A. Reid, D. Myers et al., “Excitotoxic-mediated transcriptional decreases in HCN2 channel function increase network excitability in CA1,” Experimental Neurology, vol. 219, no. 1, pp. 249–257, 2009.
[25]  S. Jung, J. B. Bullis, I. H. Lau, T. D. Jones, L. N. Warner, and N. P. Poolos, “Downregulation of dendritic HCN channel gating in epilepsy is mediated by altered phosphorylation signaling,” The Journal of Neuroscience, vol. 30, no. 19, pp. 6678–6688, 2010.
[26]  D. Kase, T. Inoue, and K. Imoto, “Roles of the subthalamic nucleus and subthalamic HCN channels in absence seizures,” Journal of Neurophysiology, vol. 107, no. 1, pp. 393–406, 2012.
[27]  S. Jung, L. N. Warner, J. Pitsch, A. J. Becker, and N. P. Poolos, “Rapid loss of dendritic HCN channel expression in hippocampal pyramidal neurons following status epilepticus,” The Journal of Neuroscience, vol. 31, no. 40, pp. 14291–14295, 2011.
[28]  J. D. Breton and G. J. Stuart, “Loss of sensory input increases the intrinsic excitability of layer 5 pyramidal neurons in rat barrel cortex,” Journal of Physiology, vol. 587, no. 21, pp. 5107–5119, 2009.
[29]  M. Wang, B. P. Ramos, C. D. Paspalas et al., “α2A-adrenoceptors strengthen working memory networks by inhibiting cAMP-HCN channel signaling in prefrontal cortex,” Cell, vol. 129, no. 2, pp. 397–410, 2007.
[30]  M. L. Hines and N. T. Carnevale, The Neuron Book, Cambridge University Press, Cambridge, UK, 2006.
[31]  J. F. Atherton, K. Kitano, J. Baufreton et al., “Selective participation of somatodendritic HCN channels in inhibitory but not excitatory synaptic integration in neurons of the subthalamic nucleus,” The Journal of Neuroscience, vol. 30, no. 47, pp. 16025–16040, 2010.
[32]  J. C. Magee, “Dendritic hyperpolarization-activated currents modify the integrative properties of hippocampal CA1 pyramidal neurons,” The Journal of Neuroscience, vol. 18, no. 19, pp. 7613–7624, 1998.
[33]  T. Berger, M. E. Larkum, and H. R. Lüscher, “High Ih channel density in the distal apical dendrite of layer V pyramidal cells increases bidirectional attenuation of EPSPs,” Journal of Neurophysiology, vol. 85, no. 2, pp. 855–868, 2001.
[34]  J. C. Magee, “Erratum: dendritic I(h) normalizes temporal summation in hippocampal CA1,” Nature Neuroscience, vol. 2, no. 9, p. 848, 1999.
[35]  S. R. Williams and G. J. Stuart, “Site independence of EPSP time course is mediated by dendritic in neocortical pyramidal neurons,” Journal of Neurophysiology, vol. 83, no. 5, pp. 3177–3182, 2000.
[36]  D. L. F. Garden, P. D. Dodson, C. O'Donnell, M. D. White, and M. F. Nolan, “Tuning of synaptic integration in the medial entorhinal cortex to the organization of grid cell firing fields,” Neuron, vol. 60, no. 5, pp. 875–889, 2008.
[37]  B. Hutcheon and Y. Yarom, “Resonance, oscillation and the intrinsic frequency preferences of neurons,” Trends in Neurosciences, vol. 23, no. 5, pp. 216–222, 2000.
[38]  F. G. Pike, R. S. Goddard, J. M. Suckling, P. Ganter, N. Kasthuri, and O. Paulsen, “Distinct frequency preferences of different types of rat hippocampal neurones in response to oscillatory input currents,” Journal of Physiology, vol. 529, no. 1, pp. 205–213, 2000.
[39]  J. Kwag and O. Paulsen, “Bidirectional control of spike timing by GAB receptor-mediated inhibition during theta oscillation in CA1 pyramidal neurons,” NeuroReport, vol. 20, no. 13, pp. 1209–1213, 2009.
[40]  D. McLelland and O. Paulsen, “Neuronal oscillations and the rate-to-phase transform: mechanism, model and mutual information,” Journal of Physiology, vol. 587, no. 4, pp. 769–785, 2009.
[41]  R. Zemankovics, S. Káli, O. Paulsen, T. F. Freund, and N. Hájos, “Differences in subthreshold resonance of hippocampal pyramidal cells and interneurons: the role of h-current and passive membrane characteristics,” Journal of Physiology, vol. 588, no. 12, pp. 2109–2132, 2010.
[42]  W. N. Xue, Y. Wang, S. M. He, X. L. Wang, J. L. Zhu, and G. D. Gao, “SK- and h-current contribute to the generation of theta-like resonance of rat substantia nigra pars compacta dopaminergic neurons at hyperpolarized membrane potentials,” Brain Structure and Function, vol. 217, no. 2, pp. 379–394, 2012.
[43]  S. G. Meuth, T. Kanyshkova, P. Meuth et al., “Membrane resting potential of thalamocortical relay neurons is shaped by the interaction among TASK3 and HCN2 channels,” Journal of Neurophysiology, vol. 96, no. 3, pp. 1517–1529, 2006.
[44]  M. S. George, L. F. Abbott, and S. A. Siegelbaum, “HCN hyperpolarization-activated cation channels inhibit EPSPs by interactions with M-type K+ channels,” Nature Neuroscience, vol. 12, no. 5, pp. 577–584, 2009.
[45]  D. A. Brown and G. M. Passmore, “Neural KCNQ (Kv7) channels,” British Journal of Pharmacology, vol. 156, no. 8, pp. 1185–1195, 2009.
[46]  Z. Huang, R. Lujan, I. Kadurin et al., “Presynaptic HCN1 channels regulate CaV3.2 activity and neurotransmission at select cortical synapses,” Nature Neuroscience, vol. 14, no. 4, pp. 478–486, 2011.
[47]  A. S. Lewis, C. M. Estep, and D. M. Chetkovich, “The fast and slow ups and downs of HCN channel regulation,” Channels, vol. 4, no. 3, pp. 215–231, 2010.
[48]  T. Tateno and H. P. Robinson, “The mechanism of ethanol action on midbrain dopaminergic neuron firing: a dynamic-clamp study of the role of Ih and GABAergic synaptic integration,” Journal of Neurophysiology, vol. 106, no. 4, pp. 1901–1922, 2011.
[49]  S. W. Ying, G. R. Tibbs, A. Picollo et al., “PIP2-mediated HCN3 channel gating is crucial for rhythmic burst firing in thalamic intergeniculate leaflet neurons,” The Journal of Neuroscience, vol. 31, no. 28, pp. 10412–10423, 2011.
[50]  C. S. Chan, K. E. Glajch, T. S. Gertler et al., “HCN channelopathy in external globus pallidus neurons in models of Parkinson's disease,” Nature Neuroscience, vol. 14, no. 1, pp. 85–92, 2011.
[51]  J. C. DiFrancesco, A. Barbuti, R. Milanesi et al., “Recessive loss-of-function mutation in the pacemaker HCN2 channel causing increased neuronal excitability in a patient with idiopathic generalized epilepsy,” The Journal of Neuroscience, vol. 31, no. 48, pp. 17327–17337, 2011.
[52]  C. A. Reid, A. M. Phillips, and S. Petrou, “HCN channelopathies: pathophysiology in genetic epilepsy and therapeutic implications,” British Journal of Pharmacology, vol. 165, no. 1, pp. 49–56, 2012.
[53]  A. Ludwig, T. Budde, J. Stieber et al., “Absence epilepsy and sinus dysrhythmia in mice lacking the pacemaker channel HCN2,” EMBO Journal, vol. 22, no. 2, pp. 216–224, 2003.
[54]  W. Rall and J. Rinzel, “Branch input resistance and steady attenuation for input to one branch of a dendritic neuron model,” Biophysical Journal, vol. 13, no. 7, pp. 648–688, 1973.
[55]  P. Hemond, D. Epstein, A. Boley, M. Migliore, G. A. Ascoli, and D. B. Jaffe, “Distinct classes of pyramidal cells exhibit mutually exclusive firing patterns in hippocampal area CA3b,” Hippocampus, vol. 18, no. 4, pp. 411–424, 2008.
[56]  A. Gillies and D. Willshaw, “Models of the subthalamic nucleus: the importance of intranuclear connectivity,” Medical Engineering and Physics, vol. 26, no. 9, pp. 723–732, 2004.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133