全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Using Geometric Properties to Evaluate Possible Integration of Authoritative and Volunteered Geographic Information

DOI: 10.3390/ijgi2020349

Keywords: geospatial dataset matching, data quality, accuracy assessment, formal and informal data, collaborative mapping

Full-Text   Cite this paper   Add to My Lib

Abstract:

The assessment of data quality from different sources can be considered as a key challenge in supporting effective geospatial data integration and promoting collaboration in mapping projects. This paper presents a methodology for assessing positional and shape quality for authoritative large-scale data, such as Ordnance Survey (OS) UK data and General Directorate for Survey (GDS) Iraq data, and Volunteered Geographic Information (VGI), such as OpenStreetMap (OSM) data, with the intention of assessing possible integration. It is based on the measurement of discrepancies among the datasets, addressing positional accuracy and shape fidelity, using standard procedures and also directional statistics. Line feature comparison has been undertaken using buffering techniques and statistics, whilst shape metrics, including moments invariant, have been applied to assess polygon matching. The analyses are presented with a user-friendly interface which eases data input, computation and output of results, and assists in interpretation of the comparison. The results show that a comparison of positional and shape characteristics of OS data or GDS data, with those of OSM data, indicates that their integration for large scale mapping applications is not viable.

References

[1]  Vandenbroucke, D.; Zambon, M.-L.; Crompvoets, J.; Dufourmont, H. Chapter 16 INSPIRE Directive: Specific Requirements to Monitor Its Implementation. In A Multi-View Framework to Assess SDIs; Crompvoets, J., Rajabifard, A., von Loenen, B., Delgado Fernández, T., Eds.; Space for Geo-Information (RGI), Wageningen University: Wageningen, The Netherlands, 2008.
[2]  Cooper, A.K.; Rapant, P.; Hjelmager, J.; Laurent, D.; Iwaniak, A.; Coetzee, S.; Moellering, H.; Düren, U. Extending the Formal Model of a Spatial Data Infrastructure to Include Volunteered Geographical Information. In Proceedings of the 25th International Cartographic Conference, Paris, France, 3–8 July 2011.
[3]  Mackaness, W.A.; Boye, J.; Clark, S.; Fredriksson, M.; Geffner, H.; Lemon, O.; Minock, M.; Webber, B. The SpaceBook Project: Pedestrian Exploration of the City Using Dialogue-Based Interaction over Smartphones. In Proceedings of the 8th International Symposium on Location-Based Services, Vienna, Austria, 21–23 November 2011.
[4]  Welle, K. Improving the Provision of Basic Services for the Poor in Fragile Environments: Water Supply, Sanitation and Hygiene; Overseas Development Institute (ODI): London, UK, 2008.
[5]  Mustière, S.; Devogele, T. Matching networks with different levels of detail. Geoinformatica 2008, 12, 435–453, doi:10.1007/s10707-007-0040-1.
[6]  Goodchild, M.F. Citizens as voluntary sensors: Spatial data infrastructure in the world of web 2.0. Int. J. Spat. Data Infrastr. Res. 2007, 2, 24–32.
[7]  Butenuth, M.; von G?sseln, G.; Tiedge, M.; Heipke, C.; Lipeck, U.; Sester, M. Integration of heterogeneous geospatial data in a federated database. ISPRS J. Photogramm. 2007, 62, 328–346, doi:10.1016/j.isprsjprs.2007.04.003.
[8]  Congalton, R.G.; Green, K. Assessing the Accuracy of Remotely Sensed Data: Principles and Practices; CRC Press: Boca Raton, FL, USA, 2009.
[9]  Neis, P.; Zipf, A. Analyzing the contributor activity of a volunteered geographic information project—The case of OpenStreetMap. ISPRS Int. J. Geo Inf. 2012, 1, 146–165, doi:10.3390/ijgi1020146.
[10]  Zielstra, D.; Zipf, A. Quantitative Studies on the Data Quality of OpenStreetMap in Germany. In Proceedings of GIScience 2010: Sixth International Conference on Geographic Information Science, Zurich, Switzerland, 14–17 September 2010.
[11]  Haklay, M. How good is volunteered geographical information? A comparative study of OpenStreetMap and ordnance survey datasets. Environ. Plan. B Plan. Des. 2010, 37, 682–703, doi:10.1068/b35097.
[12]  Girres, J.-F.; Touya, G. Quality assessment of the French OpenStreetMap dataset. Trans. GIS 2010, 14, 435–459, doi:10.1111/j.1467-9671.2010.01203.x.
[13]  Al-Bakri, M.; Fairbairn, D. Assessing the Accuracy of Crowdsourced Data and Its Integration with Official Spatial Data Sets. In Proceedings of Accuracy 2010: Ninth International Symposium on Spatial Accuracy Assessment in Natural Resources and Environmental Sciences, Leicester, UK, 20–23 July 2010; pp. 317–320.
[14]  Al-Bakri, M.; Fairbairn, D. Assessing similarity matching for possible integration of feature classifications of geospatial data from official and informal sources. Int. J. Geogr. Inform. Sci. 2012, 26, 1437–1456, doi:10.1080/13658816.2011.636012.
[15]  US Bureau of the Budget. United Stated National Map Accuracy Standards; Bureau of the Budget: Washington, DC, USA, 1947.
[16]  American Society of Civil Engineers (ASCE). Map Uses, Scales and Accuracies for Engineering and Associated Purposes; ASCE, Committee on Cartographic Surveying, Surveying and Mapping Division: New York, NY, USA, 1983.
[17]  ASPRS. Accuracy standards for large scale maps. Photogramm. Eng. Remote Sensing 1989, 56, 1038–1040.
[18]  Federal Geographic Data Committee (FGDC). Geospatial Positioning Accuracy Standards, Part 3: National Standard for Spatial Data Accuracy; FGDC: Washington, DC, USA, 1998.
[19]  Zandbergen, P.A. Positional accuracy of spatial data: Non-normal distributions and a critique of the national standard for spatial data accuracy. Trans. GIS 2008, 12, 103–130, doi:10.1111/j.1467-9671.2008.01088.x.
[20]  Greenwalt, C.; Shultz, M. Principles of Error Theory and Cartographic Applications; Aeronautical Chart and Information Center: St Louis, MO, USA, 1962.
[21]  Hanbury, A. Circular Statistics Applied to Colour Images. In Proceedings of the 8th Computer Vision Winter Workshop, Valtice, Czech Republic, 5 February 2003; pp. 55–60.
[22]  Bowers, J.A.; Morton, I.D.; Mould, G.I. Directional statistics of the wind and waves. Appl. Ocean Res. 2000, 22, 13–30, doi:10.1016/S0141-1187(99)00025-5.
[23]  Dey, S.; Ghosh, P. GRDM—A digital field-mapping tool for management and analysis of field geological data. Comput. Geosci. 2008, 34, 464–478.
[24]  Aradóttir, á.L.; Robertson, A.; Moore, E. Circular statistical analysis of birch colonization and the directional growth response of birch and black cottonwood in south Iceland. Agr. Forest Meteorol. 1997, 84, 179–186.
[25]  Corcoran, J.; Chetri, P.; Stimson, R. Using circular statistics to explore the geography of the journey to work. Pap. Reg. Sci. 2009, 88, 119–132, doi:10.1111/j.1435-5957.2008.00164.x.
[26]  Arnold, B.; Sengupta, A. Recent advances in the analyses of directional data in ecological and environmental sciences. Environ. Ecol. Stat. 2006, 13, 253–256, doi:10.1007/s10651-006-0009-5.
[27]  Fisher, N.I. Statistical Analysis of Circular Data; Cambridge University Press: New York, NY, USA, 1993.
[28]  Jammalamadaka, S.R.; Sengupta, A. Topics in Circular Statistics; World Scientific Press: Singapore, 2001.
[29]  Goodchild, M.F.; Hunter, G.J. A simple positional accuracy measure for linear features. Int. J. Geogr. Inf. Sci. 1997, 11, 299–306, doi:10.1080/136588197242419.
[30]  Tveite, H.; Langaas, S. An accuracy assessment method for geographical line data sets based on buffering. Int. J. Geogr. Inf. Sci. 1999, 13, 27–47, doi:10.1080/136588199241445.
[31]  Hu, M.-K. Visual pattern recognition by moment invariants. IRE Trans. Inf. Theory 1962, 8, 179–187.
[32]  Chen, C.-C. Improved moment invariants for shape discrimination. Patt. Recog. 1993, 26, 683–686.
[33]  Noh, J.S.; Rhee, K.H. Palmprint Identification Algorithm Using Hu Invariant Moments and Otsu Binarization. In Proceedings of the Fourth Annual ACIS International Conference on Computer and Information Science, Jeju Island, South Korea, 14–16 July 2005; pp. 94–99.
[34]  Bel Hadj Ali, A. Moment representation of polygons for the assessment of their shape quality. J. Geogr. Syst. 2002, 4, 209–232.
[35]  Lent, C. Learning to Program with MATLAB: Building GUI Tools; John Wiley: New York, NY, USA, 2013.
[36]  Ramm, F.; Topf, J.; Chilton, S. OpenStreetMap—Using and Enhancing the Free Map of the World; UIT Cambridge Ltd.: Cambridge, UK, 2011.
[37]  Comber, A.; See, L.; Fritz, S.; van der Velde, M.; Perger, C.; Foody, G. Using control data to determine the reliability of volunteered geographic information about land cover. Int. J. Appl. Earth Obs. Geoinf. 2013, 23, 37–48.
[38]  Al-Bakri, M. Developing Tools and Models for Evaluating Geospatial Data Integration of Official and VGI Data Sources. Ph.D. Thesis, Newcastle University, Newcastle, UK, 2012.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133