全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Mapping Urban Tree Species Using Very High Resolution?Satellite Imagery: Comparing Pixel-Based and Object-Based Approaches

DOI: 10.3390/ijgi2010220

Keywords: urban ecology, tree diversity, ecological monitoring, hyperspatial imagery, India

Full-Text   Cite this paper   Add to My Lib

Abstract:

We assessed the potential of multi-spectral GeoEye imagery for biodiversity assessment in an urban context in Bangalore, India. Twenty one grids of 150 by 150 m were randomly located in the city center and all tree species within these grids mapped in the field. The six most common species, collectively representing 43% of the total trees sampled, were selected for mapping using pixel-based and object-based approaches. All pairs of species were separable based on spectral reflectance values in at least one band, with Peltophorum pterocarpum being most distinct from other species. Object-based approaches were consistently superior to pixel-based methods, which were particularly low in accuracy for tree species with small canopy sizes, such as Cocos nucifera and Roystonea regia. There was a strong and significant correlation between the number of trees determined on the ground and from object-based classification. Overall, object-based approaches appear capable of discriminating the six most common species in a challenging urban environment, with substantial heterogeneity of tree canopy sizes.

References

[1]  Nagendra, H. Using remote sensing to assess biodiversity. Int. J. Remote Sens. 2001, 22, 2377–2400, doi:10.1080/01431160117096.
[2]  Turner, W.; Spector, S.; Gardiner, N.; Fladeland, M.; Sterling, E.J.; Steininger, M. Remote sensing for biodiversity science and conservation. Trends Ecol. Evol. 2003, 18, 306–314, doi:10.1016/S0169-5347(03)00070-3.
[3]  Nagendra, H.; Lucas, R.; Honrado, J.P.; Jongman, R.H.G.; Tarantino, C.; Adamo, M.; Mairota, P. Remote sensing for conservation monitoring: Assessing protected areas, habitat extent, habitat condition, species diversity and threats. Ecol. Indic. 2012, doi:10.1016/j.ecolind.2012.09.014.
[4]  Boyd, D.S.; Foody, G.M. An overview of recent remote sensing and GIS based research in ecological informatics. Ecol. Inform. 2011, 6, 25–36, doi:10.1016/j.ecoinf.2010.07.007.
[5]  Gairola, S.; Proches, S.; Rocchini, D. High-resolution satellite remote sensing: A new frontier for biodiversity exploration in Indian Himalayan forests. Int. J. Remote Sens. 2012, 34, 2006–2022, doi:10.1080/01431161.2012.730161.
[6]  Nagendra, H.; Rocchini, D. High resolution satellite imagery for tropical biodiversity studies: The devil is in the detail. Biodivers. Conserv. 2008, 17, 3431–3442, doi:10.1007/s10531-008-9479-0.
[7]  Wang, K.; Franklin, E.S.; Guo, X.; Cattet, M. Remote sensing of ecology, biodiversity and conservation: A review from the perspective of remote sensing specialists. Sensors 2010, 10, 9647–9667, doi:10.3390/s101109647.
[8]  Benz, U.C.; Hofmann, P.; Willhauck, G.; Lingenfelder, I.; Heynen, M. Multiresolution, object oriented fuzzy analysis of remote sensing data for GIS-ready information. ISPRS J. Photogramm. 2004, 58, 239–258, doi:10.1016/j.isprsjprs.2003.10.002.
[9]  Blaschke, T. Object based image analysis for remote sensing. ISPRS J. Photogrammm. 2010, 62, 2–16, doi:10.1016/j.isprsjprs.2009.06.004.
[10]  Gibbes, C.; Adhikari, S.; Rostant, L.; Southworth, J.; Qiu, Y. Application of object based classification and high resolution satellite imagery for savanna ecosystem analysis. Remote Sens. 2010, 2, 2748–2772, doi:10.3390/rs2122748.
[11]  Laliberte, A.; Fredrickson, E.; Rango, A. Combining decision trees with hierarchical object-oriented image analysis for mapping arid rangelands. Photogramm. Eng. Remote Sensing 2007, 73, 197–207.
[12]  Greenberg, J.A.; Dobrowski, S.Z.; Vanderbilt, V.C. Limitations on maximum tree density using hyperspatial remote sensing and environmental gradient analysis. Remote Sens. Environ. 2009, 113, 94–101, doi:10.1016/j.rse.2008.08.014.
[13]  Falkowski, M.J.; Wulder, M.A.; White, J.C.; Gillis, M.D. Supporting large-area, sample-based forest inventories with very high spatial resolution satellite imagery. Prog. Phys. Geog. 2009, 33, 403–423, doi:10.1177/0309133309342643.
[14]  Bhaskaran, S.; Paramananda, S.; Ramnarayan, M. Per-pixel and object-oriented classification methods for mapping urban features using Ikonos satellite data. Appl. Geogr. 2010, 30, 650–665, doi:10.1016/j.apgeog.2010.01.009.
[15]  Myint, S.W.; Gober, P.; Brazel, A.; Grossman-Clarke, S.; Weng, Q. Per-pixel vs. object-based classification of urban land cover extraction using high spatial resolution imagery. Remote Sens. Environ. 2011, 115, 1145–1161.
[16]  De Oliveira, P.; Antonio, J.; Balaban, O.; Doll, C.N.H.; Moreno-Pe?aranda, R.; Gasparatos, A.; Iossifova, D.; Suwa, A. Cities and biodiversity: Perspectives and governance challenges for implementing the convention on biological diversity (CBD) at the city level. Biol. Conserv. 2011, 144, 1302–1313, doi:10.1016/j.biocon.2010.12.007.
[17]  United Nations. World Urbanization Prospects: The 2011 Revision; Population Division, Department of Economics and Social Affairs, United Nations: New York, NY, USA, 2011.
[18]  Grimm, N.B.; Faeth, S.H.; Golubiewski, N.E.; Redman, C.L.; Wu, J.; Bai, X.; Briggs, J.M. Global change and the ecology of cities. Science 2008, 319, 756–760, doi:10.1126/science.1150195.
[19]  McKinney, M. Effects of urbanization on species richness: A review of plants and animals. Urban Ecosyst. 2008, 11, 161–176, doi:10.1007/s11252-007-0045-4.
[20]  Sudhira, H.; Ramachandra, T.; Subrahmanya, M. City profile Bangalore. Cities 2007, 24, 379–390, doi:10.1016/j.cities.2007.04.003.
[21]  Census of India, 2011. Rural-Urban Distribution. Provisional Population Totals, Paper 2, Volume 1, pp. 1–19. Available online: http://www.censusindia.gov.in/2011-prov-results/ paper2/data_files/india/paper2_1.pdf (accessed on 21 March 2012).
[22]  Nagendra, H.; Gopal, D. Street trees in Bangalore: Density, diversity, composition and distribution. Urban For. Urban Greening 2010, 9, 129–137, doi:10.1016/j.ufug.2009.12.005.
[23]  Nagendra, H.; Gopal, D. Tree diversity, distribution, history and change in urban parks. Urban Ecosyst. 2011, 14, 211–223, doi:10.1007/s11252-010-0148-1.
[24]  Jaganmohan, M.; Vailshery, L.S.; Gopal, D.; Nagendra, H. Plant diversity and distribution in urban domestic gardens and apartments in Bangalore, India. Urban Ecosyst. 2010, 15, 911–925.
[25]  Sudha, P.; Ravindranath, N.H. A study of Bangalore urban forest. Landscape Urban Plan. 2000, 47, 47–63, doi:10.1016/S0169-2046(99)00067-5.
[26]  Issar, T.P. Blossoms of Bangalore; Mytec Process Pvt. Ltd: Bangalore, India, 1994.
[27]  Neginhal, S.J. Golden Trees, Greenspaces and Urban Forestry; Self published: Bangalore, India, 2006.
[28]  Nagendra, H.; Nagendran, S.; Paul, S.; Pareeth, S. Graying, greening and fragmentation in the rapidly expanding Indian city of Bangalore. Landscape Urban Plan. 2010, 105, 400–406.
[29]  Nair, J. The Promise of the Metropolis: Bangalore’S Twentieth Century; Oxford University Press: New Delhi, India, 2005.
[30]  Sudhira, H.S.; Nagendra, H. Graying and Greening in Bangalore: Impacts of Urbanization on Ecosystems, Ecosystem Services and Biodiversity. In Cities and Biodiversity Outlook 1 Scientific Foundation: A Global Assessment of the Links Between Urbanization, Biodiversity and Ecosystems; Thomas, E., Ed.; Springer: Doerdrecht, The Netherlands, 2013. in press.
[31]  Nagendra, H.; Rocchini, D.; Ghate, R.; Sharma, B.; Pareeth, S. Assessing plant diversity in a dry tropical forest: Comparing the utility of Landsat and IKONOS satellite images. Remote Sens. 2010, 2, 478–496, doi:10.3390/rs2020478.
[32]  Jensen, J.R. Remote Sensing of the Environment: An Earth Resource Perspective; Prentice Hall: Upper Saddle River, NJ, USA, 2000.
[33]  Sokal, R.R.; Rohlf, F.J. Introduction to Biostatistics, 2nd ed.; Island Press: Washington, DC, USA, 1981.
[34]  Sch?ffler, A.; Swilling, M. Valuing green infrastructure in an urban environment under pressure—The Johannesburg case. Ecol. Econ. 2013, 86, 246–257, doi:10.1016/j.ecolecon.2012.05.008.
[35]  Müller, J.; Brandl, R. Assessing biodiversity by remote sensing in mountainous terrain: The potential of LiDAR to predict forest beetle assemblages. J. Appl. Ecol. 2009, 46, 897–905, doi:10.1111/j.1365-2664.2009.01677.x.
[36]  McGrath, B.; Pickett, S.T.A. The metacity: A conceptual framework for integrating ecology and urban design. Challenges 2011, 2, 55–72, doi:10.3390/challe2040055.
[37]  Wu, C.; Xiao, Q.; McPherson, E.G. A method for locating potential tree-planting sites in urban areas: A case study of Los Angeles, USA. Urban For. Urban Greening 2008, 7, 65–76, doi:10.1016/j.ufug.2008.01.002.
[38]  Pincetl, S. Implementing municipal tree planting: Los Angeles million-tree initiative. Environ. Manage. 2010, 45, 227–238, doi:10.1007/s00267-009-9412-7.
[39]  Jim, C.Y.; Chen, S. Variations of the treescape in relation to urban development in a Chinese city: The case of Nanjing. Prof. Geogr. 2003, 55, 70–82.
[40]  BenDor, T.K.; Metcalf, S.; Fontenot, L.E.; Sangunett, B.; Hannon, B. Modeling the spread of the emerald ash borer. Ecol. Model. 2006, 197, 221–236, doi:10.1016/j.ecolmodel.2006.03.003.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133