全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Evaluation of the performance of DIAS ionospheric forecasting models

DOI: 10.1051/swsc/2011110003

Keywords: 2447: modeling and forecasting , 2441: ionospheric storms , 2435: ionospheric disturbances , 2431: ionosphere/magnetosphere interactions , 2443: midlatitude ionosphere

Full-Text   Cite this paper   Add to My Lib

Abstract:

Nowcasting and forecasting ionospheric products and services for the European region are regularly provided since August 2006 through the European Digital upper Atmosphere Server (DIAS, http://dias.space.noa.gr). Currently, DIAS ionospheric forecasts are based on the online implementation of two models: (i) the solar wind driven autoregression model for ionospheric short-term forecast (SWIF), which combines historical and real-time ionospheric observations with solar-wind parameters obtained in real time at the L1 point from NASA ACE spacecraft, and (ii) the geomagnetically correlated autoregression model (GCAM), which is a time series forecasting method driven by a synthetic geomagnetic index. In this paper we investigate the operational ability and the accuracy of both DIAS models carrying out a metrics-based evaluation of their performance under all possible conditions. The analysis was established on the systematic comparison between models’ predictions with actual observations obtained over almost one solar cycle (1998–2007) at four European ionospheric locations (Athens, Chilton, Juliusruh and Rome) and on the comparison of the models’ performance against two simple prediction strategies, the median- and the persistence-based predictions during storm conditions. The results verify operational validity for both models and quantify their prediction accuracy under all possible conditions in support of operational applications but also of comparative studies in assessing or expanding the current ionospheric forecasting capabilities.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133