全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Early Life Adversity Alters the Developmental Profiles of Addiction-Related Prefrontal Cortex Circuitry

DOI: 10.3390/brainsci3010143

Keywords: maternal separation, prefrontal cortex, dopamine receptors, nucleus accumbens

Full-Text   Cite this paper   Add to My Lib

Abstract:

Early adverse experience is a well-known risk factor for addictive behaviors later in life. Drug addiction typically manifests during adolescence in parallel with the later-developing prefrontal cortex (PFC). While it has been shown that dopaminergic modulation within the PFC is involved in addiction-like behaviors, little is known about how early adversity modulates its development. Here, we report that maternal separation stress (4 h per day between postnatal days 2–20) alters the development of the prelimbic PFC. Immunofluorescence and confocal microscopy revealed differences between maternally-separated and control rats in dopamine D1 and D2 receptor expression during adolescence, and specifically the expression of these receptors on projection neurons. In control animals, D1 and D2 receptors were transiently increased on all glutamatergic projection neurons, as well as specifically on PFC→nucleus accumbens projection neurons (identified with retrograde tracer). Maternal separation exacerbated the adolescent peak in D1 expression and blunted the adolescent peak in D2 expression on projection neurons overall. However, neurons retrogradely traced from the accumbens expressed lower levels of D1 during adolescence after maternal separation, compared to controls. Our findings reveal microcircuitry-specific changes caused by early life adversity that could help explain heightened vulnerability to drug addiction during adolescence.

References

[1]  Agid, O.; Shapira, B.; Zislin, J.; Ritsner, M.; Hanin, B.; Murad, H.; Troudart, T.; Bloch, M.; Heresco-Levy, U.; Lerer, B. Environment and vulnerability to major psychiatric illness: A case control study of early parental loss in major depression, bipolar disorder and schizophrenia. Mol. Psychiatry 1999, 4, 163–172.
[2]  Kessler, R.; Davis, C.; Kendler, K. Childhood adversity and adult psychiatric disorder in the US National Comorbidity Survey. Psychol. Med. 1997, 27, 1101–1119, doi:10.1017/S0033291797005588.
[3]  Kessler, R.; Avenevoli, S.; Ries Merikangas, K. Mood disorders in children and adolescents: An epidemiologic perspective. Biol. Psychiatry 2001, 49, 1002–1014, doi:10.1016/S0006-3223(01)01129-5.
[4]  Davey, C.; Yucel, M.; Allen, N. The emergence of depression in adolescence: Development of the prefrontal cortex and the representation of reward. Neurosci. Biobehav. Rev. 2008, 32, 1–19.
[5]  Andersen, S.L.; Teicher, M.H. Stress, sensitive periods and maturational events in adolescent depression. Trends Neurosci. 2008, 31, 183–191, doi:10.1016/j.tins.2008.01.004.
[6]  Lehmann, J.; Feldon, J. Long-term biobehavioral effects of maternal separation in the rat: Consistent or confusing? Rev. Neurosci. 2000, 11, 383–408, doi:10.1515/REVNEURO.2000.11.4.383.
[7]  Brenhouse, H.C.; Andersen, S.L. Nonsteroidal anti-inflammatory treatment prevents delayed effects of early life stress in rats. Biol. Psychiatry 2011, 70, 434–440, doi:10.1016/j.biopsych.2011.05.006.
[8]  Chocyk, A.; Dudys, D.; Przyborowska, A.; Mackowiak, M.; Wedzony, K. Impact of maternal separation on neural cell adhesion molecules expression in dopaminergic brain regions of juvenile, adolescent and adult rats. Pharmacol. Rep. 2010, 62, 1218–1224.
[9]  Jahng, J.W.; Ryu, V.; Yoo, S.B.; Noh, S.J.; Kim, J.Y.; Lee, J.H. Mesolimbic dopaminergic activity responding to acute stress is blunted in adolescent rats that experienced neonatal maternal separation. Neuroscience 2010, 171, 144–152, doi:10.1016/j.neuroscience.2010.08.063.
[10]  Macri, S.; Laviola, G.; Leussis, M.P.; Andersen, S.L. Abnormal behavioral and neurotrophic development in the younger sibling receiving less maternal care in a communal nursing paradigm in rats. Psychoneuroendocrinology 2010, 35, 392–402, doi:10.1016/j.psyneuen.2009.07.016.
[11]  Teicher, M.H.; Samson, J.A.; Polcari, A.; Andersen, S.L. Length of time between onset of childhood sexual abuse and emergence of depression in a young adult sample: A retrospective clinical report. J. Clin. Psychiatry 2009, 70, 684–691.
[12]  Cruz, F.C.; Quadros, I.M.; Planeta Cda, S.; Miczek, K.A. Maternal separation stress in male mice: Long-term increases in alcohol intake. Psychopharmacology 2008, 201, 459–468, doi:10.1007/s00213-008-1307-4.
[13]  Moffett, M.C.; Vicentic, A.; Kozel, M.; Plotsky, P.; Francis, D.D.; Kuhar, M.J. Maternal separation alters drug intake patterns in adulthood in rats. Biochem. Pharmacol. 2007, 73, 321–330.
[14]  Teicher, M.H.; Tomoda, A.; Andersen, S.L. Neurobiological consequences of early stress and childhood maltreatment: Are results from human and animal studies comparable? Ann. N. Y. Acad. Sci. 2006, 1071, 313–323, doi:10.1196/annals.1364.024.
[15]  Kohut, S.; Roma, P.; Davis, C.; Zernig, G.; Saria, A.; Dominguez, J.; Rice, K.; Riley, A. The impact of early environmental rearing condition on the discriminative stimulus effects and fos expression induced by cocaine in adult male and female rats. Psychopharmacology 2009, 203, 383–397, doi:10.1007/s00213-008-1368-4.
[16]  Robinson, T.E.; Berridge, K.C. The psychology and neurobiology of addiction: An incentive-sensitization view. Addiction 2000, 95 (Suppl. 2), S91–S117.
[17]  Robinson, T.E.; Berridge, K.C. Review. The incentive sensitization theory of addiction: Some current issues. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2008, 363, 3137–3146, doi:10.1098/rstb.2008.0093.
[18]  Brenhouse, H.C.; Sonntag, K.C.; Andersen, S.L. Transient d1 dopamine receptor expression on prefrontal cortex projection neurons: Relationship to enhanced motivational salience of drug cues in adolescence. J. Neurosci. 2008, 28, 2375–2382.
[19]  Andersen, S.L.; Teicher, M.H. Delayed effects of early stress on hippocampal development. Neuropsychopharmacology 2004, 29, 1988–1993, doi:10.1038/sj.npp.1300528.
[20]  Ladd, C.O.; Huot, R.L.; Thrivikraman, K.V.; Nemeroff, C.B.; Meaney, M.J.; Plotsky, P.M. Long-term behavioral and neuroendocrine adaptations to adverse early experience. Prog. Brain Res. 2000, 122, 81–103.
[21]  Meaney, M.J.; Diorio, J.; Francis, D.; Widdowson, J.; LaPlante, P.; Caldji, C.; Sharma, S.; Seckl, J.R.; Plotsky, P.M. Early environmental regulation of forebrain glucocorticoid receptor gene expression: Implications for adrenocortical responses to stress. Dev. Neurosci. 1996, 18, 49–72, doi:10.1159/000111395.
[22]  Kosten, T.A.; Lee, H.J.; Kim, J.J. Early life stress impairs fear conditioning in adult male and female rats. Brain Res. 2006, 1087, 142–150.
[23]  Heim, C.; Newport, D.J.; Mletzko, T.; Miller, A.H.; Nemeroff, C.B. The link between childhood trauma and depression: Insights from HPA axis studies in humans. Psychoneuroendocrinology 2008, 33, 693–710, doi:10.1016/j.psyneuen.2008.03.008.
[24]  Heidbreder, C.; Weiss, I.; Domeny, A.; Pryce, C.; Homberg, J.; Feldon, J.; Moran, M.; Nelson, P. Behavioral, neurochemical and endocrinological characterization of the early social isolation syndrom. Neuroscience 2000, 100, 749–768, doi:10.1016/S0306-4522(00)00336-5.
[25]  Stevenson, C.W.; Marsden, C.A.; Mason, R. Early life stress causes FG-7142-induced corticolimbic dysfunction in adulthood. Brain Res. 2008, 1193, 43–50, doi:10.1016/j.brainres.2007.11.062.
[26]  Helmeke, C.; Ovtscharoff, W.J.; Poeggel, G.; Braun, K. Imbalance of immunohistochemically characterized interneuron populationsn in the adolescent and adult rodent medial prefrontal cortex after repeated exposure to neonatal separation stress. Neuroscience 2008, 152, 18–28, doi:10.1016/j.neuroscience.2007.12.023.
[27]  Alexander, G.E.; Goldman, P.S. Functional development of the dorsolateral prefrontal cortex: An analysis utlizing reversible cryogenic depression. Brain Res. 1978, 143, 233–249, doi:10.1016/0006-8993(78)90566-8.
[28]  Leussis, M.P.; Andersen, S.L. Is adolescence a sensitive period for depression? Behavioral and neuroanatomical findings from a social stress model. Synapse 2008, 62, 22–30, doi:10.1002/syn.20462.
[29]  Radley, J.J.; Sisti, H.M.; Hao, J.; Rocher, A.B.; McCall, T.; Hof, P.R.; McEwen, B.S.; Morrison, J.H. Chronic behavioral stress induces apical dendritic reorganization in pyramidal neurons of the medial prefrontal cortex. Neuroscience 2004, 125, 1–6.
[30]  Kikusui, T.; Mori, Y. Behavioral and neurochemical consequences of early weaning in rodents. J. Neuroendocrinol. 2009, 21, 427–431.
[31]  Hains, A.B.; Arnsten, A.F. Molecular mechanisms of stress-induced prefrontal cortical impairment: Implications for mental illness. Learn. Mem. 2008, 15, 551–564, doi:10.1101/lm.921708.
[32]  Kalsbeek, A.; Voorn, P.; Buijs, R.M.; Pool, C.W.; Uylings, H.B. Development of the dopaminergic innervation in the prefrontal cortex of the rat. J. Comp. Neurol. 1988, 269, 58–72, doi:10.1002/cne.902690105.
[33]  Kalivas, P.W.; Volkow, N.; Seamans, J. Unmanageable motivation in addiction: A pathology in prefrontal-accumbens glutamate transmission. Neuron 2005, 45, 647–650, doi:10.1016/j.neuron.2005.02.005.
[34]  Blum, K.; Braverman, E.R.; Holder, J.M.; Lubar, J.F.; Monastra, V.J.; Miller, D.; Lubar, J.O.; Chen, T.J.; Comings, D.E. Reward deficiency syndrome: A biogenetic model for the diagnosis and treatment of impulsive, addictive, and compulsive behaviors. J. Psychoactive Drugs 2000, 32 (Suppl. i–iv), 1–112, doi:10.1080/02791072.2000.10400206.
[35]  Bjork, J.M.; Knutson, B.; Fong, G.W.; Caggiano, D.M.; Bennett, S.M.; Hommer, D.W. Incentive-elicited brain activation in adolescents: Similarities and differences from young adults. J. Neurosci. 2004, 24, 1793–1802.
[36]  Matthews, S.C.; Simmons, A.N.; Lane, S.D.; Paulus, M.P. Selective activation of the nucleus accumbens during risk-taking decision making. Neuroreport 2004, 15, 2123–2127, doi:10.1097/00001756-200409150-00025.
[37]  Piazza, P.V.; Rouge-Pont, F.; Deminiere, J.M.; Kharoubi, M.; Le Moal, M.; Simon, H. Dopaminergic activity is reduced in the prefrontal cortex and increased in the nucleus accumbens of rats predisposed to develop amphetamine self-administration. Brain Res. 1991, 567, 169–174.
[38]  Robinson, T.E.; Berridge, K.C. The neural basis of drug craving: An incentive-sensitization theory of addiction. Brain Res. Brain Res. Rev. 1993, 18, 247–291, doi:10.1016/0165-0173(93)90013-P.
[39]  Kalivas, P.W.; Pierce, R.C.; Cornish, J.; Sorg, B.A. A role for sensitization in craving and relapse in cocaine addiction. J. Psychopharmacol. 1998, 12, 49–53.
[40]  Crews, F.; He, J.; Hodge, C. Adolescent cortical development: A critical period of vulnerability for addiction. Pharmacol. Biochem. Behav. 2007, 86, 189–199, doi:10.1016/j.pbb.2006.12.001.
[41]  Tseng, K.Y.; O’Donnell, P. Dopamine modulation of prefrontal cortical interneurons changes during adolescence. Cereb. Cortex 2007, 17, 1235–1240.
[42]  Andersen, S.L.; Thompson, A.T.; Rutstein, M.; Hostetter, J.C.; Teicher, M.H. Dopamine receptor pruning in prefrontal cortex during the periadolescent period in rats. Synapse 2000, 37, 167–169, doi:10.1002/1098-2396(200008)37:2<167::AID-SYN11>3.0.CO;2-B.
[43]  Andersen, S. Changes in the second messenger cyclic amp during development may underlie motoric symptoms in attention deficit/hyperactivity disorder (ADHD). Behav. Brain Res. 2002, 130, 197–201.
[44]  Alleweireldt, A.T.; Weber, S.M.; Kirschner, K.F.; Bullock, B.L.; Neisewander, J.L. Blockade or stimulation of D1 dopamine receptors attenuates cue reinstatement of extinguished cocaine-seeking behavior in rats. Psychopharmacology 2002, 159, 284–293.
[45]  Sanchez, C.J.; Bailie, T.M.; Wu, W.R.; Li, N.; Sorg, B.A. Manipulation of dopamine D1-like receptor activation in the rat medial prefrontal cortex alters stress- and cocaine-induced reinstatement of conditioned place preference behavior. Neuroscience 2003, 119, 497–505, doi:10.1016/S0306-4522(03)00078-2.
[46]  Brenhouse, H.C.; Dumais, K.; Andersen, S.L. Enhancing the salience of dullness: Behavioral and pharmacological strategies to facilitate extinction of drug-cue associations in adolescent rats. Neuroscience 2010, 169, 628–636, doi:10.1016/j.neuroscience.2010.05.063.
[47]  Everitt, B.J.; Wolf, M.E. Psychomotor stimulant addiction: A neural systems perspective. J. Neurosci. 2002, 22, 3312–3320.
[48]  Seamans, J.K.; Yang, C.R. The principal features and mechanisms of dopamine modulation in the prefrontal cortex. Prog. Neurobiol. 2004, 74, 1–58.
[49]  Wright, L.D.; Hebert, K.E.; Perrot-Sinal, T.S. Periadolescent stress exposure exerts long-term effects on adult stress responding and expression of prefrontal dopamine receptors in male and female rats. Psychoneuroendocrinology 2008, 33, 130–142, doi:10.1016/j.psyneuen.2007.10.009.
[50]  Muhammad, A.; Carroll, C.; Kolb, B. Stress during development alters dendritic morphology in the nucleus accumbens and prefrontal cortex. Neuroscience 2012, 216, 103–109, doi:10.1016/j.neuroscience.2012.04.041.
[51]  See, R.E. Dopamine D1 receptor antagonism in the prelimbic cortex blocks the reinstatement of heroin-seeking in an animal model of relapse. Int. J. Neuropsychopharmacol. 2009, 12, 431–436, doi:10.1017/S1461145709000054.
[52]  Tseng, K.Y.; O’Donnell, P. D2 dopamine receptors recruit a GABA component for their attenuation of excitatory synaptic transmission in the adult rat prefrontal cortex. Synapse 2007, 61, 843–850.
[53]  Kalivas, P.W.; Duffy, P. Dopamine regulation of extracellular glutamate in the nucleus accumbens. Brain Res. 1997, 761, 173–177, doi:10.1016/S0006-8993(97)00464-2.
[54]  Tseng, K.Y.; O’Donnell, P. Dopamine-glutamate interactions controlling prefrontal cortical pyramidal cell excitability involve multiple signaling mechanisms. J. Neurosci. 2004, 24, 5131–5139.
[55]  Lambe, E.K.; Krimer, L.S.; Goldman-Rakic, P.S. Differential postnatal development of catecholamine and serotonin inputs to identified neurons in prefrontal cortex of rhesus monkey. J. Neurosci. 2000, 20, 8780–8787.
[56]  Bordelon-Glausier, J.R.; Khan, Z.U.; Muly, E.C. Quantification of d1 and d5 dopamine receptor localization in layers i, iii, and v of macaca mulatta prefrontal cortical area 9: Coexpression in dendritic spines and axon terminals. J. Comp. Neurol. 2008, 508, 893–905, doi:10.1002/cne.21710.
[57]  St Onge, J.R.; Stopper, C.M.; Zahm, D.S.; Floresco, S.B. Separate prefrontal-subcortical circuits mediate different components of risk-based decision making. J. Neurosci. 2012, 32, 2886–2899.
[58]  Gladwin, T.E.; Figner, B.; Crone, E.A.; Wiers, R.W. Addiction, adolescence, and the integration of control and motivation. Dev. Cogn. Neurosci. 2011, 1, 364–376, doi:10.1016/j.dcn.2011.06.008.
[59]  Schneider, S.; Peters, J.; Bromberg, U.; Brassen, S.; Miedl, S.F.; Banaschewski, T.; Barker, G.J.; Conrod, P.; Flor, H.; Garavan, H.; et al. Risk taking and the adolescent reward system: A potential common link to substance abuse. Am. J. Psychiatry 2012, 169, 39–46.
[60]  Briand, L.A.; Flagel, S.B.; Garcia-Fuster, M.J.; Watson, S.J.; Akil, H.; Sarter, M.; Robinson, T.E. Persistent alterations in cognitive function and prefrontal dopamine D2 receptors following extended, but not limited, access to self-administered cocaine. Neuropsychopharmacology 2008, 33, 2969–2980, doi:10.1038/npp.2008.18.
[61]  Andersen, S.L.; Lyss, P.J.; Dumont, N.L.; Teicher, M.H. Enduring neurochemical effects of early maternal separation on limbic structures. Ann. N. Y. Acad. Sci. 1999, 877, 756–759, doi:10.1111/j.1749-6632.1999.tb09317.x.
[62]  Plotsky, P.M.; Meaney, M.J. Early, postnatal experience alters hypothalamic corticotropin-releasing factor (CRF) mRNA, median eminence CRF content and stress-induced release in adult rats. Brain Res. Mol. Brain Res. 1993, 18, 195–200, doi:10.1016/0169-328X(93)90189-V.
[63]  Spear, L.P.; File, S.E. Methodological considerations in neurobehavioral teratology. Pharmacol. Biochem. Behav. 1996, 55, 455–457.
[64]  Sherwood, N.; Timeras, P. A Stereotaxic Atlas of the Developing Rat Brain; University of California Press: Los Angeles, CA, USA, 1970.
[65]  Cavalieri, B. Geometria degli Indivisibili; Unione Tipografico-Editrice Torinese: Torino, Italy, 1966.
[66]  Paxinos, G.; Watson, C. The Rat Brain in Stereotaxic Coordinates, 4th ed.; Academic Press: New York, NY, USA, 1998.
[67]  Katz, L.C.; Burkhalter, A.; Dreyer, W.J. Fluorescent latex microspheres as a retrograde neuronal marker for in vivo and in vitro studies of visual cortex. Nature 1984, 310, 498–500, doi:10.1038/310498a0.
[68]  Spear, L. The adolescent brain and age-related behavioral manifestations. Neurosci. Biobehav. Rev. 2000, 24, 417–463, doi:10.1016/S0149-7634(00)00014-2.
[69]  Laviola, G.; Macri, S.; Morley-Fletcher, S.; Adriani, W. Risk-taking behavior in adolescent mice: Psychobiological determinants and early epigenetic influence. Neurosci. Biobehav. Rev. 2003, 27, 19–32, doi:10.1016/S0149-7634(03)00006-X.
[70]  O’Brien, M.S.; Anthony, J.C. Risk of becoming cocaine dependent: Epidemiological estimates for the united states, 2000–2001. Neuropsychopharmacology 2005, 30, 1006–1018.
[71]  Dube, S.R.; Felitti, V.J.; Dong, M.; Chapman, D.P.; Giles, W.H.; Anda, R.F. Childhood abuse, neglect, and household dysfunction and the risk of illicit drug use: The adverse childhood experiences study. Pediatrics 2003, 111, 564–572, doi:10.1542/peds.111.3.564.
[72]  Andersen, S.L.; Teicher, M.H. Desperately driven and no brakes: Developmental stress exposure and subsequent risk for substance abuse. Neurosci. Biobehav. Rev. 2009, 33, 516–524, doi:10.1016/j.neubiorev.2008.09.009.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133