Sr 2?xBa xTa 3O 10 ?yN z ( x = 0.0, 0.5, 1.0) nanosheets were prepared by exfoliating layered perovskite compounds (CsSr 2?xBa xTa 3O 10 ?yN z). The Sr 1.5Ba 0.5Ta 3O 9.7N 0.2 nanosheet showed the highest photocatalytic activity for H 2 production from the water/methanol system among the Sr 2?xBa xTa 3O 9.7N 0.2 nanosheets prepared. In addition, Rh-loaded Sr 1.5Ba 0.5Ta 3O 9.6N 0.3 nanosheet showed the photocatalytic activity for oxygen and hydrogen production from water. The ratio of hydrogen to oxygen evolved was around two. These results indicate that the Rh-loaded Sr 1.5Ba 0.5Ta 3O 9.6N 0.3 nanosheet is a potential catalyst for photocatalytic water splitting.
References
[1]
Sasaki, T.; Watanabe, M.; Hashizume, H.; Yamada, H.; Nakazawa, H. Macromolecule-like aspects for a colloidal suspension of an exfoliated titanate. Pairwise association of nanosheets and dynamic reassembling process initiated from it. J. Am. Chem. Soc. 1996, 118, 8329–8335, doi:10.1021/ja960073b.
[2]
Schaak, R.E.; Mallouk, T.E. Self-assembly of tiled perovskite monolayer and multilayer thin films. Chem. Mater. 2000, 12, 2513–2516, doi:10.1021/cm0004073.
[3]
Han, Y.-S.; Park, I.; Choy, J.-H. Exfoliation of layered perovskite, KCa2Nb3O10, into colloidal nanosheets by a novel chemical process. J. Mater. Chem. 2001, 11, 1277–1282.
[4]
Abe, R.; Shinohara, K.; Tanaka, A.; Hara, M.; Kondo, J.N.; Domen, K. Preparation of porous niobium oxide by the exfoliation of K4Nb6O17 and its photocatalytic activity. J. Mater. Res. 1998, 13, 861–865, doi:10.1557/JMR.1998.0115.
[5]
Ida, S.; Ogata, C.; Unal, U.; Izawa, K.; Inoue, T.; Altuntasoglu, O.; Matsumoto, Y. Preparation of a blue luminescent nanosheet derived from layered perovskite Bi2SrTa2O9. J. Am. Chem. Soc. 2007, 129, 8956–8957, doi:10.1021/ja073105b.
[6]
Nadeau, P.H.; Wilson, M.J.; McHardy, W.J.; Tait, J.M. Interstratified clays as fundamental particles. Science 1984, 225, 923–925.
[7]
Ma, R.; Liu, Z.; Takada, K.; Iyi, N.; Bando, Y.; Sasaki, T. Synthesis and exfoliation of Co2+-Fe3+ layered double hydroxides: An innovative topochemical approach. J. Am. Chem. Soc. 2007, 129, 5257–5263, doi:10.1021/ja0693035.
[8]
Ida, S.; Shiga, D.; Koinuma, M.; Matsumoto, Y. Synthesis of hexagonal nickel hydroxide nanosheets by exfoliation of layered hickel hydroxide intercalated with dodecyl sulfate ions. J. Am. Chem. Soc. 2008, 130, 14038–14039, doi:10.1021/ja804397n.
[9]
Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.
[10]
Kato, H.; Asakura, K.; Kudo, A. Highly efficient water splitting into H2 and O2 over lanthanum-doped NaTaO3 photocatalysts with high crystallinity and surface nanostructure. J. Am. Chem. Soc. 2003, 125, 3082–3089, doi:10.1021/ja027751g.
Abe, R.; Shinohara, K.; Tanaka, A.; Hara, M.; Kondo, J.N.; Domen, K. Preparation of porous niobium oxides by soft-chemical process and their photocatalytic activity. Chem. Mater. 1997, 9, 2179–2184.
[13]
Ebina, Y.; Sasaki, T.; Harada, M.; Watanabe, M. Restacked perovskite nanosheets and their Pt-loaded materials as photocatalysts. Chem. Mater. 2002, 14, 4390–4395, doi:10.1021/cm020622e.
[14]
Hata, H.; Kobayashi, Y.; Bojan, V.; Youngblood, W.J.; Mallouk, T.E. Direct deposition of trivalent rhodium hydroxide nanoparticles onto a semiconducting layered calcium niobate for photocatalytic hydrogen evolution. Nano Lett. 2008, 8, 794–799, doi:10.1021/nl072571w.
[15]
Comptons, O.C.; Mullet, C.H.; Chiang, S.; Osterloh, F.E. A Building block approach to photochemical water-splitting catalysts based on layered niobate nanosheets. J. Phys. Chem. C 2008, 112, 6202–6208, doi:10.1021/jp711589z.
[16]
Okamoto, Y.; Ida, S.; Hyodo, J.; Hagiwara, H.; Ishihara, T. Synthesis and photocatalytic activity of rhodium-doped calcium niobate nanosheets for hydrogen production from a water/methanol system without cocatalyst loading. J. Am. Chem. Soc. 2011, 133, 18034–18037.
[17]
Ida, S.; Okamoto, Y.; Matsuka, M.; Hagiwara, H.; Ishihara, T. Preparation of tantalum-based oxynitride nanosheets by exfoliation of a layered oxynitride, CsCa2Ta3O10?xNy and their photocatalytic activity. J. Am. Chem. Soc. 2012, 134, 15773–15782, doi:10.1021/ja3043678.
Matsumoto, Y.; Koinuma, M.; Iwanaga, Y.; Sato, T.; Ida, S. N doping of oxide nanosheets. J. Am. Chem. Soc. 2009, 131, 6644–6645, doi:10.1021/ja807388t.
[20]
Toda, K.; Teranishi, T.; Ye, Z.-G.; Sato, M.; Hinatsu, Y. Structural chemistry of new ion-exchangeable tantalates with layered perovskite structure: New Dion-Jacobson phase MCa2Ta3O10 (M = alkali metal) and Ruddlesden-Popper phase Na2Ca2Ta3O10. Mater. Res. Bull. 1999, 34, 971–982, doi:10.1016/S0025-5408(99)00084-7.
[21]
Zong, X.; Sun, C.; Chen, Z.; Mukherji, A.; Wu, H.; Zou, J.; Smith, S.C.; Lu, G.Q.; Wang, L. Nitrogen doping in ion-exchangeable layered tantalate towards visible-light induced water oxidation. Chem. Commun. 2011, 47, 6293–6295.
[22]
Izawa, K.; Yamada, T.; Unal, U.; Ida, S.; Altuntasoglu, O.; Koinuma, M.; Matsumoto, Y. Photoelectrochemical oxidation of methanol on oxide nanosheets. J. Phys. Chem. B 2006, 110, 4645–4650.