全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Cells  2013 

Temporal Gene Expression Kinetics for Human Keratinocytes Exposed to Hyperthermic Stress

DOI: 10.3390/cells2020224

Keywords: keratinocytes, heat shock, gene expression, cellular stress response, bioinformatics

Full-Text   Cite this paper   Add to My Lib

Abstract:

The gene expression kinetics for human cells exposed to hyperthermic stress are not well characterized. In this study, we identified and characterized the genes that are differentially expressed in human epidermal keratinocyte (HEK) cells exposed to hyperthermic stress. In order to obtain temporal gene expression kinetics, we exposed HEK cells to a heat stress protocol (44 °C for 40 min) and used messenger RNA (mRNA) microarrays at 0 h, 4 h and 24 h post-exposure. Bioinformatics software was employed to characterize the chief biological processes and canonical pathways associated with these heat stress genes. The data shows that the genes encoding for heat shock proteins (HSPs) that function to prevent further protein denaturation and aggregation, such as HSP40, HSP70 and HSP105, exhibit maximal expression immediately after exposure to hyperthermic stress. In contrast, the smaller HSPs, such as HSP10 and HSP27, which function in mitochondrial protein biogenesis and cellular adaptation, exhibit maximal expression during the “recovery phase”, roughly 24 h post-exposure. These data suggest that the temporal expression kinetics for each particular HSP appears to correlate with the cellular function that is required at each time point. In summary, these data provide additional insight regarding the expression kinetics of genes that are triggered in HEK cells exposed to hyperthermic stress.

References

[1]  Schreck, R.; Albermann, K.; Baeuerle, P.A. Nuclear factor kappa B: An oxidative stress-responsive transcription factor of eukaryotic cells (a review). Free Radic. Res. Commun. 1992, 17, 221–237, doi:10.3109/10715769209079515.
[2]  Wilmink, G.J.; Grundt, J.E. Invited review article: Current state of research on biological effects of terahertz radiation. J. Infrared. Millim. Te. 2011, 32, 1074–1122, doi:10.1007/s10762-011-9794-5.
[3]  Wilmink, G.J.; Opalenik, S.R.; Beckham, J.T.; Abraham, A.A.; Nanney, L.B.; Mahadevan-Jansen, A.; Davidson, J.M.; Jansen, E.D. Molecular imaging-assisted optimization of hsp70 expression during laser-induced thermal preconditioning for wound repair enhancement. J. Invest. Dermatol. 2009, 129, 205–216, doi:10.1038/jid.2008.175.
[4]  Wilmink, G.J.; Opalenik, S.R.; Beckham, J.T.; Davidson, J.M.; Jansen, E.D. Assessing laser-tissue damage with bioluminescent imaging. J. Biomed. Opt. 2006, 11, 041114, doi:10.1117/1.2339012.
[5]  Wilmink, G.J.; Opalenik, S.R.; Beckham, J.T.; Mackanos, M.A.; Nanney, L.B.; Contag, C.H.; Davidson, J.M.; Jansen, E.D. In-vivo optical imaging of hsp70 expression to assess collateral tissue damage associated with infrared laser ablation of skin. J. Biomed. Opt. 2008, 13, 054066, doi:10.1117/1.2992594.
[6]  Wilmink, G.J.; Rivest, B.D.; Roth, C.C.; Ibey, B.L.; Payne, J.A.; Cundin, L.X.; Grundt, J.E.; Peralta, X.; Mixon, D.G.; Roach, W.P. In vitro investigation of the biological effects associated with human dermal fibroblasts exposed to 2.52 THz radiation. Laser. Surg. Med. 2011, 43, 152–163, doi:10.1002/lsm.20960.
[7]  Beckham, J.T.; Wilmink, G.J.; Mackanos, M.A.; Takahashi, K.; Contag, C.H.; Takahashi, T.; Jansen, E.D. Role of HSP70 in cellular thermotolerance. Laser. Surg. Med. 2008, 40, 704–715, doi:10.1002/lsm.20713.
[8]  Beckham, J.T.; Wilmink, G.J.; Opalenik, S.R.; Mackanos, M.A.; Abraham, A.A.; Takahashi, K.; Contag, C.H.; Takahashi, T.; Jansen, E.D. Microarray analysis of cellular thermotolerance. Laser. Surg. Med. 2010, 42, 752–765, doi:10.1002/lsm.20963.
[9]  Kabakov, A.E.; Budagova, K.R.; Latchman, D.S.; Kampinga, H.H. Stressful preconditioning and HSP70 overexpression attenuate proteotoxicity of cellular ATP depletion. Am. J. Physiol. Cell Physiol. 2002, 283, C521–C534.
[10]  Wilmink, G.J.; Roth, C.C.; Ibey, B.L.; Ketchum, N.; Bernhard, J.; Cerna, C.Z.; Roach, W.P. Identification of microRNAs associated with hyperthermia-induced cellular stress response. Cell Stress Chaperon. 2010, 15, 1027–1038, doi:10.1007/s12192-010-0189-7.
[11]  Richter, K.; Haslbeck, M.; Buchner, J. The heat shock response: Life on the verge of death. Mol. Cell 2010, 40, 253–266, doi:10.1016/j.molcel.2010.10.006.
[12]  Kultz, D. Evolution of the cellular stress proteome: From monophyletic origin to ubiquitous function. J. Exp. Biol. 2003, 206, 3119–3124, doi:10.1242/jeb.00549.
[13]  Kultz, D. Molecular and evolutionary basis of the cellular stress response. Annu. Rev. Physiol. 2005, 67, 225–257, doi:10.1146/annurev.physiol.67.040403.103635.
[14]  Otto, A.I.; Riou, L.; Marionnet, C.; Mori, T.; Sarasin, A.; Magnaldo, T. Differential behaviors toward ultraviolet A and B radiation of fibroblasts and keratinocytes from normal and DNA-repair-deficient patients. Cancer Res. 1999, 59, 1212–1218.
[15]  Sesto, A. Analysis of the ultraviolet B response in primary human keratinocytes using oligonucleotide microarrays. Proc. Natl. Acad. Sci. USA 2002, 99, 2965–2970, doi:10.1073/pnas.052678999.
[16]  Li, D.; Turi, T.G.; Schuck, A.; Freedberg, I.M.; Khitrov, G.; Blumenberg, M. Rays and arrays: The transcriptional program in the response of human epidermal keratinocytes to UVB illumination. FASEB J. 2001, 15, 2533–2535.
[17]  Howell, B.G.; Wang, B.; Freed, I.; Mamelak, A.J.; Watanabe, H.; Sauder, D.N. Microarray analysis of UVB-regulated genes in keratinocytes: Downregulation of angiogenesis inhibitor thrombospondin-1. J. Dermatol. Sci. 2004, 34, 185–194, doi:10.1016/j.jdermsci.2004.01.004.
[18]  Bender, K.; Blattner, C.; Knebel, A.; Iordanov, M.; Herrlich, P.; Rahmsdorf, H.J. UV-induced signal transduction. J. Photochem. Photobiol. B Biol. 1997, 37, 1–17, doi:10.1016/S1011-1344(96)07459-3.
[19]  Tyrrell, R.M. Activation of mammalian gene expression by the UV component of sunlight—From models to reality. BioEssays 1996, 18, 139–148, doi:10.1002/bies.950180210.
[20]  Rygiel, T.P.; Mertens, A.E.; Strumane, K.; van der Kammen, R.; Collard, J.G. The Rac activator Tiam1 prevents keratinocytes apoptosis by controlling ROS-mediated ERK phosphorylation. J. Cell Sci. 2008, 121, 1183–1192, doi:10.1242/jcs.017194.
[21]  Benjamini, Y.; Hochberg, Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. Roy. Stat. Soc. Ser. B 1995, 57, 289–300.
[22]  Ingenuity Systems, Inc. Home Page. Available online: http://www.ingenuity.com/ (accessed on 1 August 2012).
[23]  GeneCards? Home Page. Available online: http://www.genecards.org/ (accessed on 1 August 2012).
[24]  HGNC, HUGO Gene Nomenclature Committee Home Page. Available online: http://www.genenames.org/ (accessed on 1 August 2012).
[25]  The Gene Ontology Home Page. Available online: http://geneontology.org/ (accessed on 1 August 2012).

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133