Isolation of Highly Suppressive CD25+FoxP3+ T Regulatory Cells from G-CSF-Mobilized Donors with Retention of Cytotoxic Anti-Viral CTLs: Application for Multi-Functional Immunotherapy Post Stem Cell Transplantation
Previous studies have demonstrated the effective control of cytomegalovirus (CMV) infections post haematopoietic stem cell transplant through the adoptive transfer of donor derived CMV-specific T cells (CMV-T). Strategies for manufacturing CMV immunotherapies has involved a second leukapheresis or blood draw from the donor, which in the unrelated donor setting is not always possible. We have investigated the feasibility of using an aliquot of the original G-CSF-mobilized graft as a starting material for manufacture of CMV-T and examined the activation marker CD25 as a targeted approach for identification and isolation following CMVpp65 peptide stimulation. CD25+ cells isolated from G-CSF-mobilized apheresis revealed a significant increase in the proportion of FoxP3 expression when compared with conventional non-mobilized CD25+ cells and showed a superior suppressive capacity in a T cell proliferation assay, demonstrating the emergence of a population of Tregs not present in non-mobilized apheresis collections. The expansion of CD25+ CMV-T in short-term culture resulted in a mixed population of CD4+ and CD8+ T cells with CMV-specificity that secreted cytotoxic effector molecules and lysed CMVpp65 peptide-loaded phytohaemagglutinin-stimulated blasts. Furthermore CD25 expanded cells retained their suppressive capacity but did not maintain FoxP3 expression or secrete IL-10. In summary our data indicates that CD25 enrichment post CMV stimulation in G-CSF-mobilized PBMCs results in the simultaneous generation of both a functional population of anti-viral T cells and Tregs thus illustrating a potential single therapeutic strategy for the treatment of both GvHD and CMV reactivation following allogeneic haematopoietic stem cell transplantation. The use of G-CSF-mobilized cells as a starting material for cell therapy manufacture represents a feasible approach to alleviating the many problems incurred with successive donations and procurement of cells from unrelated donors. This approach may therefore simplify the clinical application of adoptive immunotherapy and broaden the approach for manufacturing multi-functional T cells.
References
[1]
Chakrabarti S, Mackinnon S, Chopra R, Kottaridis PD, Peggs K, et al. (2002) High incidence of cytomegalovirus infection after nonmyeloablative stem cell transplantation: potential role of Campath-1H in delaying immune reconstitution. Blood 99: 4357–4363.
[2]
Gooley TA, Chien JW, Pergam SA, Hingorani S, Sorror ML, et al. (2010) Reduced mortality after allogeneic hematopoietic-cell transplantation. N Engl J Med 363: 2091–2101.
[3]
Reusser P, Riddell SR, Meyers JD, Greenberg PD (1991) Cytotoxic T-lymphocyte response to cytomegalovirus after human allogeneic bone marrow transplantation: pattern of recovery and correlation with cytomegalovirus infection and disease. Blood 78: 1373–1380.
[4]
Cobbold M, Khan N, Pourgheysari B, Tauro S, McDonald D, et al. (2005) Adoptive transfer of cytomegalovirus-specific CTL to stem cell transplant patients after selection by HLA-peptide tetramers. J Exp Med 202: 379–386.
[5]
Einsele H, Roosnek E, Rufer N, Sinzger C, Riegler S, et al. (2002) Infusion of cytomegalovirus (CMV)-specific T cells for the treatment of CMV infection not responding to antiviral chemotherapy. Blood 99: 3916–3922.
[6]
Leen AM, Myers GD, Sili U, Huls MH, Weiss H, et al. (2006) Monoculture-derived T lymphocytes specific for multiple viruses expand and produce clinically relevant effects in immunocompromised individuals. Nat Med 12: 1160–1166.
[7]
Micklethwaite K, Hansen A, Foster A, Snape E, Antonenas V, et al. (2007) Ex vivo expansion and prophylactic infusion of CMV-pp65 peptide-specific cytotoxic T-lymphocytes following allogeneic hematopoietic stem cell transplantation. Biol Blood Marrow Transplant 13: 707–714.
[8]
Peggs KS, Verfuerth S, Pizzey A, Khan N, Guiver M, et al. (2003) Adoptive cellular therapy for early cytomegalovirus infection after allogeneic stem-cell transplantation with virus-specific T-cell lines. Lancet 362: 1375–1377.
[9]
Riddell SR, Watanabe KS, Goodrich JM, Li CR, Agha ME, et al. (1992) Restoration of viral immunity in immunodeficient humans by the adoptive transfer of T cell clones. Science 257: 238–241.
[10]
Walter EA, Greenberg PD, Gilbert MJ, Finch RJ, Watanabe KS, et al. (1995) Reconstitution of cellular immunity against cytomegalovirus in recipients of allogeneic bone marrow by transfer of T-cell clones from the donor. N Engl J Med 333: 1038–1044.
[11]
Feuchtinger T, Opherk K, Bethge WA, Topp MS, Schuster FR, et al. (2010) Adoptive transfer of pp65-specific T cells for the treatment of chemorefractory cytomegalovirus disease or reactivation after haploidentical and matched unrelated stem cell transplantation. Blood116: 4360–4367.
[12]
Peggs KS, Thomson K, Samuel E, Dyer G, Armoogum J, et al. (2010) Directly selected cytomegalovirus-reactive donor T cells confer rapid and safe systemic reconstitution of virus-specific immunity following stem cell transplantation. Clin Infect Dis 52: 49–57.
[13]
Moosmann A, Bigalke I, Tischer J, Schirrmann L, Kasten J, et al. (2010) Effective and long-term control of EBV PTLD after transfer of peptide-selected T cells. Blood 115: 2960–2970.
[14]
Feuchtinger T, Lang P, Hamprecht K, Schumm M, Greil J, et al. (2004) Isolation and expansion of human adenovirus-specific CD4+ and CD8+ T cells according to IFN-gamma secretion for adjuvant immunotherapy. Exp Hematol 32: 282–289.
[15]
Chattopadhyay PK, Yu J, Roederer M (2005) A live-cell assay to detect antigen-specific CD4+ T cells with diverse cytokine profiles. Nat Med 11: 1113–1117.
[16]
Frentsch M, Arbach O, Kirchhoff D, Moewes B, Worm M, et al. (2005) Direct access to CD4+ T cells specific for defined antigens according to CD154 expression. Nat Med 11: 1118–1124.
[17]
Gallot G, Vivien R, Ibisch C, Lule J, Davrinche C, et al. (2001) Purification of Ag-specific T lymphocytes after direct peripheral blood mononuclear cell stimulation followed by CD25 selection. I. Application to CD4(+) or CD8(+) cytomegalovirus phosphoprotein pp65 epitope determination. J Immunol 167: 4196–4206.
[18]
Watanabe K, Suzuki S, Kamei M, Toji S, Kawase T, et al. (2008) CD137-guided isolation and expansion of antigen-specific CD8 cells for potential use in adoptive immunotherapy. Int J Hematol 88: 311–320.
[19]
Wehler TC, Karg M, Distler E, Konur A, Nonn M, et al. (2008) Rapid identification and sorting of viable virus-reactive CD4(+) and CD8(+) T cells based on antigen-triggered CD137 expression. J Immunol Methods 339: 23–37.
[20]
Wolfl M, Kuball J, Ho WY, Nguyen H, Manley TJ, et al. (2007) Activation-induced expression of CD137 permits detection, isolation, and expansion of the full repertoire of CD8+ T cells responding to antigen without requiring knowledge of epitope specificities. Blood 110: 201–210.
[21]
Lugthart G, Albon SJ, Ricciardelli I, Kester MG, Meij P, et al. (2012) Simultaneous generation of multivirus-specific and regulatory T cells for adoptive immunotherapy. J Immunother 35: 42–53.
[22]
Powell DJ, Parker LL, Rosenberg SA (2005) Large-Scale Depletion of CD25+ Regulatory T Cells from Patient Leukapheresis Samples. J Immunother 28: 403–411.
[23]
Arpinati M, Green CL, Heimfeld S, Heuser JE, Anasetti C (2000) Granulocyte-colony stimulating factor mobilizes T helper 2-inducing dendritic cells. Blood 95: 2484–2490.
[24]
Kitabayashi A, Hirokawa M, Hatano Y, Lee M, Kuroki J, et al. (1995) Granulocyte colony-stimulating factor downregulates allogeneic immune responses by posttranscriptional inhibition of tumor necrosis factor-alpha production. Blood 86: 2220–2227.
[25]
Pan L, Teshima T, Hill GR, Bungard D, Brinson YS, et al. (1999) Granulocyte colony-stimulating factor-mobilized allogeneic stem cell transplantation maintains graft-versus-leukemia effects through a perforin-dependent pathway while preventing graft-versus-host disease. Blood 93: 4071–4078.
[26]
Sloand EM, Kim S, Maciejewski JP, van RF, Chaudhuri A, et al. (2000) Pharmacologic doses of granulocyte colony-stimulating factor affect cytokine production by lymphocytes in vitro and in vivo. Blood 95: 2269–2274.
[27]
Tayebi H, Kuttler F, Saas P, Lienard A, Petracca B, et al. (2001) Effect of granulocyte colony-stimulating factor mobilization on phenotypical and functional properties of immune cells. Exp Hematol 29: 458–470.
[28]
Toh HC, Sun L, Soe Y, Wu Y, Phoon YP, et al. (2009) G-CSF induces a potentially tolerant gene and immunophenotype profile in T cells in vivo. Clin Immunol 132: 83–92.
[29]
Abbi KK, Zhu J, Ehmann WC, Epner E, Carraher M, et al. (2013) G-CSF mobilized vs conventional donor lymphocytes for therapy of relapse or incomplete engraftment after allogeneic hematopoietic transplantation. Bone Marrow Transplant 48: 357–362.
[30]
Levine JE, Braun T, Penza SL, Beatty P, Cornetta K, et al. (2002) Prospective trial of chemotherapy and donor leukocyte infusions for relapse of advanced myeloid malignancies after allogeneic stem-cell transplantation. J Clin Oncol 20: 405–412.
[31]
Samuel ER, Newton K, Mackinnon S, Lowdell MW (2013) Successful isolation and expansion of CMV-reactive T cells from G-CSF mobilized donors that retain a strong cytotoxic effector function. Br J Haematol 160: 87–100.
[32]
Clancy LE, Blyth E, Simms R, Micklethwaite KP, Kris Ma CK, et al. (2013) Cytomegalovirus-Specific Cytotoxic T Lymphocytes Can Be Efficiently Expanded from Granulocyte Colony-Stimulating Factor-Mobilized Hemopoietic Progenitor Cell Products ex Vivo and Safely Transferred to Stem Cell Transplantation Recipients to Facilitate Immune Reconstitution. Biol Blood Marrow Transplant 19: 725–734.
[33]
Sakaguchi S, Sakaguchi N, Asano M, Itoh M, Toda M (1995) Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol 155: 1151–1164.
[34]
Sakaguchi S (2004) Naturally arising CD4+ regulatory t cells for immunologic self-tolerance and negative control of immune responses. Annu Rev Immunol 22: 531–562.
[35]
Fontenot JD, Gavin MA, Rudensky AY (2012) Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat Immunol 4: 330–336.
[36]
Ukena SN, Velaga S, Goudeva L, Ivanyi P, Olek S, et al. (2012) Human Regulatory T Cells of G-CSF Mobilized Allogeneic Stem Cell Donors Qualify for Clinical Application. PLoS One 7: e51644.
[37]
Brincks EL, Roberts AD, Cookenham T, Sell S, Kohlmeier JE, et al. (2013) Antigen-Specific Memory Regulatory CD4+Foxp3+ T Cells Control Memory Responses to Influenza Virus Infection. J Immunol 190: 3438–3446.
[38]
Litjens NH, Boer K, Betjes MG (2012) Identification of circulating human antigen-reactive CD4+ FOXP3+ natural regulatory T cells. J Immunol 188: 1083–1090.
[39]
Melenhorst JJ, Scheinberg P, Lu J, Ambrozak DR, Sosa E, et al. (2008) Regulatory T-cell depletion does not prevent emergence of new CD25+ FOXP3+ lymphocytes after antigen stimulation in culture. Cytotherapy 10: 152–164.
[40]
Suffia IJ, Reckling SK, Piccirillo CA, Goldszmid RS, Belkaid Y (2006) Infected site-restricted Foxp3+ natural regulatory T cells are specific for microbial antigens. J Exp Med 203: 777–788.
[41]
Tovar-Salazar A, Patterson-Bartlett J, Jesser R, Weinberg A (2010) Regulatory function of cytomegalovirus-specific CD4+CD27-. Virology 398: 158–167.
[42]
Walker MR, Carson BD, Nepom GT, Ziegler SF, Buckner JH (2005) De novo generation of antigen-specific CD4+CD25+ regulatory T cells from human CD4+. Proc Natl Acad Sci U S A 102: 4103–4108.
[43]
Nguyen VH, Shashidhar S, Chang DS, Ho L, Kambham N, et al. (2008) The impact of regulatory T cells on T-cell immunity following hematopoietic cell transplantation. Blood 111: 945–953.
[44]
Di IM, Falzetti F, Carotti A, Terenzi A, Castellino F, et al. (2011) Tregs prevent GVHD and promote immune reconstitution in HLA-haploidentical transplantation. Blood 117: 3921–3928.
[45]
Adeegbe DO, Nishikawa H (2013) Natural and induced T regulatory cells in cancer. Front Immunol 4: 190.
[46]
Walker MR, Kasprowicz DJ, Gersuk VH, Benard A, Van LM, et al. (2003) Induction of FoxP3 and acquisition of T regulatory activity by stimulated human CD4+. J Clin Invest 112: 1437–1443.
[47]
Allan SE, Crome SQ, Crellin NK, Passerini L, Steiner TS, et al. (2007) Activation-induced FOXP3 in human T effector cells does not suppress proliferation or cytokine production. Int Immunol 2007 19: 345–354.
[48]
Gavin MA, Torgerson TR, Houston E, DeRoos P, Ho WY, et al. (2006) Single-cell analysis of normal and FOXP3-mutant human T cells: FOXP3 expression without regulatory T cell development. Proc Natl Acad Sci U S A 103: 6659–6664.