全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

In Situ Raman Spectroscopy of COOH-Functionalized SWCNTs Trapped with Optoelectronic Tweezers

DOI: 10.1155/2012/869829

Full-Text   Cite this paper   Add to My Lib

Abstract:

Optoelectronic tweezers (OETs) were used to trap and deposit aqueous dispersions of carboxylic-acid-functionalized single-walled carbon nanotube bundles. Dark-field video microscopy was used to visualize the dynamics of the bundles both with and without virtual electrodes, showing rapid accumulation of carbon nanotubes when optical virtual electrodes are actuated. Raman microscopy was used to probe SWCNT materials following deposition onto metallic fiducial markers as well as during trapping. The local carbon nanotube concentration was observed to increase rapidly during trapping by more than an order of magnitude in less than one second due to localized optical dielectrophoresis forces. This combination of enrichment and spectroscopy with a single laser spot suggests a broad range of applications in physical, chemical, and biological sciences. 1. Introduction One persistent challenge in molecular sensing is the enriching of candidate analytes to concentrations high enough for detection. Optoelectronic tweezers (OET) recently have been used as a versatile platform for trapping objects such as polystyrene spheres, living cells [1], and solid-state nanowires [2], and both [3] single- and [4] multi-walled samples of carbon nanotubes using 100,000x less optical power than single-beam laser traps. Based on a combination of dielectrophoresis and optical image patterning, OET has the unique capability of massively parallel localization of organic and inorganic nanoscale structures for both direct visualization and spectroscopic characterization. In this paper, we use carboxylic-acid- (COOH-) functionalized single-walled carbon nanotubes as a model system to demonstrate analyte enrichment by over an order of magnitude with a low-power OET trapping laser that serves simultaneously as a Raman spectroscopic probe. 2. Materials and Methods 2.1. Carbon Nanotube Sample Preparation COOH-functionalized carbon nanotubes have been used as a surfactant-free alternative for aqueous SWCNT suspensions, with the hydrophilic COOH-surface functional groups serving as a means to suspend the nanotubes on polar solvents such as water [5]. In this work, COOH functionalized SWCNTs (P3, Carbon Solutions, Inc., ~4 atomic % COOH-functionalization) were dispersed as made in Milli-Q deionized water, bath-sonicated for 30?min, and centrifuged for 30?min at 16,000?g to remove large bundles and other metallic catalyst particles yielding a semitransparent solution. 2.2. Carbon Nanotube Sample Characterization Transmission electron microscopy (JEOL CM-300) and atomic force microscopy (Veeco)

References

[1]  P. Y. Chiou, A. T. Ohta, and M. C. Wu, “Massively parallel manipulation of single cells and microparticles using optical images,” Nature, vol. 436, no. 7049, pp. 370–372, 2005.
[2]  A. Jamshidi, P. J. Pauzauskie, P. J. Schuck et al., “Dynamic manipulation and separation of individual semiconducting and metallic nanowires,” Nature Photonics, vol. 2, no. 2, pp. 86–89, 2008.
[3]  M. W. Lee, Y. H. Lin, and G. B. Lee, “Manipulation and patterning of carbon nanotubes utilizing optically induced dielectrophoretic forces,” Microfluidics and Nanofluidics, vol. 8, no. 5, pp. 609–617, 2010.
[4]  P. J. Pauzauskie, A. Jamshidi, J. K. Valley, J. H. Satcher, and M. C. Wu, “Parallel trapping of multiwalled carbon nanotubes with optoelectronic tweezers,” Applied Physics Letters, vol. 95, no. 11, Article ID 113104, 2009.
[5]  K. Balasubramanian and M. Burghard, “Chemically functionalized carbon nanotubes,” Small, vol. 1, no. 2, pp. 180–192, 2005.
[6]  Z. Yu and L. Brus, “Rayleigh and Raman scattering from individual carbon nanotube bundles,” The Journal of Physical Chemistry B, vol. 105, no. 6, pp. 1123–1134, 2001.
[7]  R. Krupke, F. Hennrich, H. von L?hneysen, and M. M. Kappes, “Separation of metallic from semiconducting single-walled carbon nanotubes,” Science, vol. 301, no. 5631, pp. 344–347, 2003.
[8]  S. Tan, H. A. Lopez, C. W. Cai, and Y. Zhang, “Optical trapping of single-walled carbon nanotubes,” Nano Letters, vol. 4, no. 8, pp. 1415–1419, 2004.
[9]  O. M. Maragò, P. H. Jones, F. Bqnaccorso et al., “Femtonewton force sensing with optically trapped nanotubes,” Nano Letters, vol. 8, no. 10, pp. 3211–3216, 2008.
[10]  T. Rodgers, S. Shoji, Z. Sekkat, and S. Kawata, “Selective aggregation of single-walled carbon nanotubes using the large optical field gradient of a focused laser beam,” Physical Review Letters, vol. 101, no. 12, Article ID 127402, 2008.
[11]  R. Saito, M. S. Dresselhaus, and G. Dresselhaus, Physical Properties of Carbon Nanotubes, Imperial College Press, London, UK, 1998.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133