The climate impacts of future urbanization in the Pearl River Delta (PRD) region in China were simulated with the Dynamics of Land Systems (DLS) model and the Weather Research and Forecasting (WRF) model in this study. The land use and land cover data in 2000 and 2020 were simulated with the DLS model based on the regional development planning. Then the spatial and temporal changes of surface air temperature, ground heat flux, and regional precipitation in 2020 were quantified and analyzed through comparing simulation results by WRF. Results show that the built-up land will become the dominant land use type in the PRD in 2020. Besides, the near-surface air temperature shows an increasing trend on the whole region in both summer and winter, but with some seasonal variation. The urban temperature rise is more apparent in summer than it is in winter. In addition, there is some difference between the spatial pattern of precipitation in summer and winter in 2020; the spatial variation of precipitation is a bit greater in summer than it is in winter. Results can provide significant reference for the land use management to alleviate the climate change. 1. Introduction Urbanization can lead to massive loss of cultivated land, forestry area, and grassland and pose a threat to national food security and ecological safety [1]. More importantly, it can change the land surface properties and consequently influence the regional climate [2, 3]. The urban areas have a higher heat-storage capacity, Bowen ratio, and surface roughness in comparison to the rural areas [4]. These differences lead to the change of dynamic processes in the atmospheric boundary layer and the surface energy budget, which ultimately affect the regional climate in and around the urban areas [5]. More attention should be paid to the climate effect of urbanization since more than half of the world’s population resides in the urban areas, which is expected to continue to increase [6–8]. The research on the climate impacts of urbanization can help to predict and solve the problems caused by climate change more scientifically and efficiently. For example, Seto and Shepherd [9] indicated that the land use and land cover changes in the urban area exerted great impacts on the climate. Stone Jr. [10] suggested that the climate change could be more efficiently mitigated through regulating the land use change than only controlling the greenhouse gas emission. Besides, Stone et al. [11] recommended that the municipal and state governments should broaden climate action plans to include the urban-scale heat
References
[1]
X. Deng, J. Huang, S. Rozelle, and E. Uchida, “Cultivated land conversion and potential agricultural productivity in China,” Land Use Policy, vol. 23, no. 4, pp. 372–384, 2006.
[2]
C. Deng and C. Wu, “Examining the impacts of urban biophysical compositions on surface urban heat island: a spectral unmixing and thermal mixing approach,” Remote Sensing of Environment, vol. 131, pp. 262–274, 2013.
[3]
X. Deng, C. Zhao, and H. Yan, “Systematic modeling of impacts of land use and land cover changes on regional climate: a review,” Advances in Meteorology, vol. 2013, Article ID 317678, 11 pages, 2013.
[4]
S. Peng, S. Piao, P. Ciais et al., “Surface urban heat island across 419 global big cities,” Environmental Science & Technology, vol. 46, no. 2, pp. 696–703, 2012.
[5]
B. Stone, J. J. Hess, and H. Frumkin, “Urban form and extreme heat events: are sprawling cities more vulnerable to climate change than compact cities?” Environmental Health Perspectives, vol. 118, no. 10, pp. 1425–1428, 2010.
[6]
B. Cohen, “Urbanization in developing countries: current trends, future projections, and key challenges for sustainability,” Technology in Society, vol. 28, no. 1-2, pp. 63–80, 2006.
[7]
X. Deng, J. Huang, S. Rozelle, and E. Uchida, “Growth, population and industrialization, and urban land expansion of China,” Journal of Urban Economics, vol. 63, no. 1, pp. 96–115, 2008.
[8]
X. Deng, J. Huang, S. Rozelle, and E. Uchida, “Economic growth and the expansion of urban land in China,” Urban Studies, vol. 47, no. 4, pp. 813–843, 2010.
[9]
K. C. Seto and J. M. Shepherd, “Global urban land-use trends and climate impacts,” Current Opinion in Environmental Sustainability, vol. 1, no. 1, pp. 89–95, 2009.
[10]
B. Stone Jr., “Land use as climate change mitigation,” Environmental Science & Technology, vol. 43, no. 24, pp. 9052–9056, 2009.
[11]
B. Stone, J. Vargo, and D. Habeeb, “Managing climate change in cities: will climate action plans work?” Landscape and Urban Planning, 2012.
[12]
J. J. Feddema, K. W. Oleson, G. B. Bonan et al., “Atmospheric science: the importance of land-cover change in simulating future climates,” Science, vol. 310, no. 5754, pp. 1674–1678, 2005.
[13]
W. Li, S. Chen, G. Chen et al., “Urbanization signatures in strong versus weak precipitation over the Pearl River Delta metropolitan regions of China,” Environmental Research Letters, vol. 6, Article ID 034020, 2011.
[14]
R. A. Pielke, J. Adegoke, A. Beltrán-Przekurat et al., “An overview of regional land-use and land-cover impacts on rainfall,” Tellus, Series B, vol. 59, no. 3, pp. 587–601, 2007.
[15]
C.-Y. Lam, “On climate changes brought about by urban living,” in Designing High-Density Cities for Social and Environmental Sustainability, pp. 55–61, 2010.
[16]
J. Chen, Q. Li, J. Niu, and L. Sun, “Regional climate change and local urbanization effects on weather variables in Southeast China,” Stochastic Environmental Research and Risk Assessment, vol. 25, no. 4, pp. 555–565, 2011.
[17]
J. C. F. Lo, A. K. H. Lau, F. Chen, J. C. H. Fung, and K. K. M. Leung, “Urban modification in a mesoscale model and the effects on the local circulation in the Pearl River Delta Region,” Journal of Applied Meteorology and Climatology, vol. 46, no. 4, pp. 457–476, 2007.
[18]
R. K. Kaufmann, K. C. Seto, A. Schneider, Z. Liu, L. Zhou, and W. Wang, “Climate response to rapid urban growth: evidence of a human-induced precipitation deficit,” Journal of Climate, vol. 20, no. 10, pp. 2299–2306, 2007.
[19]
X. Deng, H. Su, and J. Zhan, “Integration of multiple data sources to simulate the dynamics of land systems,” Sensors, vol. 8, no. 2, pp. 620–634, 2008.
[20]
J. Jin, N. L. Miller, and N. Schlegel, “Sensitivity study of four land surface schemes in the WRF model,” Advances in Meteorology, vol. 2010, Article ID 167436, 11 pages, 2010.
[21]
H. Kusaka and F. Kimura, “Coupling a single-layer urban canopy model with a simple atmospheric model: Impact on urban heat island simulation for an idealized case,” Journal of the Meteorological Society of Japan, vol. 82, no. 1, pp. 67–80, 2004.
[22]
H. Kusaka, H. Kondo, Y. Kikegawa, and F. Kimura, “A simple single-layer urban canopy model for atmospheric models: Comparison with multi-layer and slab models,” Boundary-Layer Meteorology, vol. 101, no. 3, pp. 329–358, 2001.
[23]
M. Wang, X. Yan, J. Liu, and X. Zhang, “The contribution of urbanization to recent extreme heat events and a potential mitigation strategy in the Beijing-Tianjin-Hebei metropolitan area,” Theoretical and Applied Climatology, 2013.
[24]
X. Z. Zhang, J. H. Dai, and Q. S. Ge, “Variation in vegetation greenness in spring across eastern China during 1982–2006,” Journal of Geographical Sciences, vol. 23, no. 1, pp. 45–56.
[25]
J. Wang, J. Feng, Z. Yan, Y. Hu, and G. Jia, “Nested high-resolution modeling of the impact of urbanization on regional climate in three vast urban agglomerations in China,” Journal of Geophysical Research, vol. 117, no. D21, 2012.
[26]
M. J. Iacono, J. S. Delamere, E. J. Mlawer, M. W. Shephard, S. A. Clough, and W. D. Collins, “Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models,” Journal of Geophysical Research D: Atmospheres, vol. 113, no. 13, Article ID D13103, 2008.
[27]
S.-Y. Hong, J. Dudhia, and S.-H. Chen, “A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation,” Monthly Weather Review, vol. 132, no. 1, pp. 103–120, 2004.
[28]
J. S. Kain and J. Kain, “The Kain-Fritsch convective parameterization: an update,” Journal of Applied Meteorology, vol. 43, no. 1, pp. 170–181, 2004.
[29]
Y. Noh, W. G. Cheon, S. Y. Hong, and S. Raasch, “Improvement of the K-profile model for the planetary boundary layer based on large eddy simulation data,” Boundary-Layer Meteorology, vol. 107, no. 2, pp. 401–427, 2003.
[30]
M. O. Andreae, C. D. Jones, and P. M. Cox, “Strong present-day aerosol cooling implies a hot future,” Nature, vol. 435, no. 7046, pp. 1187–1190, 2005.
[31]
C. K. Cheng and J. C. Chan, “Impacts of land use changes and synoptic forcing on the seasonal climate over the Pearl River Delta of China,” Atmospheric Environment, vol. 60, pp. 25–36, 2012.
[32]
N. Zhang, Z. Gao, X. Wang, and Y. Chen, “Modeling the impact of urbanization on the local and regional climate in Yangtze River Delta, China,” Theoretical and Applied Climatology, vol. 102, no. 3, pp. 331–342, 2010.
[33]
M. Piringer, C. Grimmond, S. Joffre et al., “Investigating the surface energy balance in urban areas—recent advances and future needs,” Water, Air and Soil Pollution: Focus, vol. 2, no. 5-6, pp. 1–16, 2002.
[34]
S. C. van den Heever and W. R. Cotton, “Urban aerosol impacts on downwind convective storms,” Journal of Applied Meteorology and Climatology, vol. 46, no. 6, pp. 828–850, 2007.