To understand the effects of the land use/cover changes due to agricultural development on summer climate in Eastern China, four 12-year simulations using the WRF-SSiB model were performed. We found that agricultural development resulted in warming and rainy effects. In the middle to lower reaches of the Yellow River and the Yangtze River, the warming effects were approximately 0.6°C and resulted from increased surface net radiation and sensible heat fluxes. In Northeast China, the warming effects were very small due to increases in latent heat fluxes which resulted from the extensive conversion from grassland to cropland. The rainy effect resulted from increases in convective rainfall, which was associated with a warming surface in certain areas of the Yellow River and Yangtze River and a large increase in the surface moisture flux in Northeast China. Conversely, in the middle to lower reaches of the Yellow River and the Yangtze River, the grid-scale rainfall decreased because the climatological northward wind, which is moist and warm, was partially offset by a southward wind anomaly. These findings suggest that the agricultural development left footprints not only on the present climate but also on the historical climate changes before the industrial revolution. 1. Introduction Eastern China is affected by the Asian monsoon [1]. In this area, summer is the warmest and wettest season. The heat and rainfall in summer feed agriculture for human welfare. Therefore, the summer climate has crucial implications to the originations and development of agriculture in East China [2]. The agriculture in Eastern China potentially extends back thousands of years [3]. Agricultural development converts land cover from natural vegetation (e.g., forest, grassland, and wetland) to anthropogenic cropland. Such conversions may lead to changes in surface parameters, including albedo, emissivity, and roughness and therefore may have important climatic implications [4, 5]. As a result, as a by-product of agricultural development, the summer climate might be modified. The current summer climate might therefore include a human dimension. Studying the effects of agricultural development would be valuable for understanding “natural” summer climate to improve our predictability of future scenarios. Many studies attempted to use past history to reveal the effects of human-induced land cover changes (HLCCs) on regional climate [6]. According to the experimental design, these simulation-based studies can be classified into two categories. The first category focused on the climatic
References
[1]
T. Zhou, H. H. Hsu, and J. Mastumoto, “Summer monsoons in East Asia, Indochina and the Western North Pacific,” in Global Monsoon System: Research and Forecast, C. P. Chang, Y. Ding, N. C. Lau, R. H. Johnson, B. Wang, and T. Yasunari, Eds., pp. 43–72, World Scientific Publishing, Singapore, 2011.
[2]
S. Piao, P. Ciais, Y. Huang et al., “The impacts of climate change on water resources and agriculture in China,” Nature, vol. 467, no. 7311, pp. 43–51, 2010.
[3]
D. J. Cohen, “The beginnings of agriculture in china: a multiregional view,” Current Anthropology, vol. 52, supplement 4, pp. S273–S293, 2011.
[4]
P. A. Dirmeyer, D. Niyogi, N. de Noblet-Ducoudré, R. E. Dickinson, and P. K. Snyder, “Impacts of land use change on climate,” International Journal of Climatology, vol. 30, no. 13, pp. 1905–1907, 2010.
[5]
R. Mahmood, R. A. Pielke, K. G. Hubbard, et al., “Land cover changes and their biogeophysical effects on climate,” Internal Journal of Climatology, 2013.
[6]
J. Zheng, S. Lin, and F. He, “Recent progress in studies on land cover change and its regional climatic effects over China during historical times,” Advances in Atmospheric Sciences, vol. 26, no. 4, pp. 793–802, 2009.
[7]
C. Fu, “Potential impacts of human-induced land cover change on East Asia monsoon,” Global and Planetary Change, vol. 37, no. 3-4, pp. 219–229, 2003.
[8]
X. J. Gao, D. F. Zhang, Z. X. Chen, J. S. Pal, and F. Giorgi, “Land use effects on climate in China as simulated by a regional climate model,” Science in China D, vol. 50, no. 4, pp. 620–628, 2007.
[9]
H. Wang, A. J. Pitman, M. Zhao, and R. Leemans, “The impact of land-cover modification on the June meteorology of China since 1700, simulated using a regional climate model,” International Journal of Climatology, vol. 23, no. 5, pp. 511–527, 2003.
[10]
K. K. Goldewijk, “Estimating global land use change over the past 300 years: the HYDE database,” Global Biogeochemical Cycles, vol. 15, no. 2, pp. 417–433, 2001.
[11]
Q. Li, Y. Ding, and W. Dong, “A numerical simulation study of impacts of historical land-use changes on the regional climate in China since 1700,” Acta Meteorologica Sinica, vol. 21, no. 1, pp. 9–23, 2007.
[12]
P. Forster, V. Ramaswamy, P. Artaxo, et al., “Changes in atmospheric constituents and in radiative forcing,” in Climate Change 2007: The Physical Science Basis, S. Solomon, Ed., pp. 180–185, Cambridge University Press, Cambridge, UK, 2007.
[13]
F. N. He, S. C. Li, and X. Z. Zhang, “Comparisons of reconstructed cropland area from multiple datasets for the traditional cultivated region of China in the last 300 years,” Journal of Geographical Sciences, vol. 67, no. 9, pp. 1190–1200, 2012.
[14]
W. C. Skamarock, J. B. Klemo, J. Dudhia et al., “A description of the advanced research WRF version 3,” Tech. Rep. NCAR/TN-475+STR, 2008.
[15]
Y. Xue, P. J. Sellers, J. L. Kinter, and J. Shukla, “A simplified biosphere model for global climate studies,” Journal of Climate, vol. 4, no. 3, pp. 345–364, 1991.
[16]
Y. Xue, F. J. Zeng, K. E. Mitchell, Z. Janjic, and E. Rogers, “The impact of land surface processes on simulations of the U.S. hydrological cycle: a case study of the 1993 flood usingthe SSiB land surface model in the NCEP Eta regional model,” Monthly Weather Review, vol. 129, no. 12, pp. 2833–2860, 2001.
[17]
Y. Xue, “The impact of desertification in the Mongolian and the Inner Mongolian grassland on the regional climate,” Journal of Climate, vol. 9, no. 9, pp. 2173–2189, 1996.
[18]
H. Liu and G. Wu, “Impacts of land surface on climate of July and onset of summer monsoon: a study with an AGCM plus SSiB,” Advances in Atmospheric Sciences, vol. 14, no. 3, pp. 289–308, 1997.
[19]
Y. Xue, H.-M. H. Juang, W.-P. Li et al., “Role of land surface processes in monsoon development: East Asia and West Africa,” Journal of Geophysical Research D, vol. 109, no. 3, Article ID D03105, 24 pages, 2004.
[20]
W. D. Collins, P. J. Rasch, B. A. Boville, et al., “Description of the NCAR community atmosphere model (CAM 3.0),” Tech. Rep. NCAR/TN-464+STR, 2004.
[21]
S.-Y. Hong and H.-L. Pan, “Nonlocal boundary layer vertical diffusion in a medium-range forecast model,” Monthly Weather Review, vol. 124, no. 10, pp. 2322–2339, 1996.
[22]
S.-Y. Hong, J. Dudhia, and S.-H. Chen, “A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation,” Monthly Weather Review, vol. 132, no. 1, pp. 103–120, 2004.
[23]
G. A. Grell and D. Dévényi, “A generalized approach to parameterizing convection combining ensemble and data assimilation techniques,” Geophysical Research Letters, vol. 29, no. 14, pp. 38-1–38-4, 2002.
[24]
X. Zhang and Editor Committee of Vegetation Map of China, Eds., Vegetation Map of China and its Geographic Pattern—Illustration of the Vegetation Map of the People’s Republic of China (1:1000000), The Geongical Publishing House, Beijing, China, 2007.
[25]
Q. Ge, J. Dai, F. He, J. Zheng, Z. Man, and Y. Zhao, “Spatiotemporal dynamics of reclamation and cultivation and its driving factors in parts of China during the last three centuries,” Progress in Natural Science, vol. 14, no. 7, pp. 605–613, 2004.
[26]
S. Lin, J. Zheng, and F. He, “Gridding cropland data reconstruction over the agricultural region of China in 1820,” Journal of Geographical Sciences, vol. 19, no. 1, pp. 36–48, 2009.
[27]
J. Y. Liu, M. L. Liu, D. F. Zhuang, Z. X. Zhang, and X. Z. Deng, “Study on spatial pattern of land-use change in China during 1995–2000,” Science in China D, vol. 46, no. 4, pp. 373–384, 2003.
[28]
Y. Xu, X. J. Gao, Y. Shen, C. H. Xu, Y. Shi, and F. Giorgi, “A daily temperature dataset over China and its application in validating a RCM simulation,” Advances in Atmospheric Sciences, vol. 26, no. 4, pp. 763–772, 2009.
[29]
W. Shi, F. Tao, and J. Liu, “Regional temperature change over the Huang-Huai-Hai Plain of China: the roles of irrigation versus urbanization,” International Journal of Climatology, 2013.