The performance of immunoassays for the detection of autoantibodies is of critical importance in the diagnosis and assessment of patients with autoimmune connective tissue diseases (ACTD). Our objective was to compare the features of two multiplexed assays—INNO-LIA ANA and Gennova-PictArray ENA ELISA—for measurement of multiple autoantibodies and their utility as a clinical tool in ACTD diagnosis. The antigens included SS-A/Ro (60 and 52), SSB/La, Sm, Sm/RNP, CENP-B, Jo-1, and Scl-70. Stored sera from 85 ACTD patients and 80 controls consisting of patients with vasculitis, rheumatoid arthritis and infectious diseases, as well as healthy subjects were analyzed jointly with clinical and laboratory data. Agreement between the two methods varied between 58 and 99% (Cohen’s kappa: 0.21–0.71) mostly for SSA and SSB. The frequency of specific autoantibodies measured using the two methods was more variable for SSA, SSB, and RNP/Sm. There were a higher number of ambiguous results when using INNO-LIA. The optimized cut-off values of the Gennova-PictArray resulted in over 99% specificities in samples obtained from the control group. Sensitivity patterns were more accurate in Gennova-PictArray than in INNO-LIA, as suggested in previously reported studies. A third method could be applied to determine which of the two methods is more accurate. 1. Introduction The detection of antinuclear antibodies (ANA) has long been an important tool in the early diagnosis of autoimmune connective tissue diseases [1]. The antigens used in their detection are purified by the saline extraction of animal origin nuclei, being termed as extractable nuclear antigens (ENA). The correct use and interpretation of serologic testing for diagnosing autoimmune diseases present a challenge to clinicians for several reasons: (a) the sensitivity and specificity of most laboratory tests for autoimmune disease are significantly less than 100% and (b) detection of autoantibodies using different techniques such as indirect immunofluorescence or multiplex bead assays give different results [2]. Multiplex microarray-based ELISA assays have been reported to provide concordant results when compared with ELISA-based tests [3] with the added advantage offered by multiplexing reduced labor and provision of the complete autoantibody profile with a single test. Autoantibodies play a role as biomarkers assisting in diagnosis and monitoring of disease activity, predicting disease onset, classifying disease subsets, and defining prognosis [4]. Their detection with high sensitivity and specificity is therefore of
References
[1]
D. E. Habash-Bseiso, S. H. Yale, I. Glurich, and J. W. Goldberg, “Serologic testing in connective tissue diseases,” Clinical Medicine and Research, vol. 3, no. 3, pp. 190–193, 2005.
[2]
S. E. Self, “Autoantibody testing for autoimmune disease,” Clinics in Chest Medicine, vol. 31, no. 3, pp. 415–422, 2010.
[3]
J. G. Hanly, L. Su, V. Farewell, and M. J. Fritzler, “Comparison between multiplex assays for autoantibody detection in systemic lupus erythematosus,” Journal of Immunological Methods, vol. 358, no. 1-2, pp. 75–80, 2010.
[4]
K. G. Moder, “Use and interpretation of rheumatologic tests: a guide for clinicians,” Mayo Clinic Proceedings, vol. 71, no. 4, pp. 391–396, 1996.
[5]
Y. Kumar, A. Bhatia, and R. W. Minz, “Antinuclear antibodies and their detection methods in diagnosis of connective tissue diseases: a journey revisited,” Diagnostic Pathology, vol. 4, no. 1, article 1, 2009.
[6]
M. C. Hochberg, “Updating the American College of Rheumatology revised criteria for the classification of systemic lupus erythematosus,” Arthritis and Rheumatism, vol. 40, no. 9, p. 1725, 1997.
[7]
E. Fishbein, D. Alarcon-Segovia, and J. M. Vega, “Antibodies to histones in systemic lupus erythematosus,” Clinical and Experimental Immunology, vol. 36, no. 1, pp. 145–150, 1979.
[8]
J. Damoiseaux, K. Boesten, J. Giesen, J. Austen, and J. W. C. Tervaert, “Evaluation of a novel line-blot immunoassay for the detection of antibodies to extractable nuclear antigens,” Annals of the New York Academy of Sciences, vol. 1050, pp. 340–347, 2005.
[9]
M. G. Kendall, Rank Correlation Methods, Charles Griffin & Co., London, UK, 1955.
[10]
J. L. Fleiss, J. C. Nee, and J. R. Landis, “Large sample variance of kappa in the case of different sets of raters,” Psychological Bulletin, vol. 86, no. 5, pp. 974–977, 1979.
[11]
N. J. Blackman and J. J. Koval, “Interval estimation for Cohen's kappa as a measure of agreement,” Statistics in Medicine, vol. 19, no. 5, pp. 723–741, 2000.
[12]
P. K. Chugh and B. S. Kalra, “Belimumab: targeted therapy for lupus,” International Journal of Rheumatic Diseases, vol. 16, no. 1, pp. 4–13, 2013.
[13]
S. L. Gurevitz, J. A. Snyder, E. K. Wessel, J. Frey, and B. A. Williamson, “Systemic lupus erythematosus: a review of the disease and treatment options,” The Consultant Pharmacist, vol. 28, pp. 110–121, 2013.
[14]
R. Vij and M. E. Strek, “Diagnosis and treatment of connective tissue disease-associated interstitial lung disease,” Chest, vol. 143, no. 3, pp. 814–824, 2013.
[15]
E. Binder and M. Edelbauer, “Use of biomarkers in the management of children with lupus,” Current Rheumatology Reports, vol. 15, no. 3, p. 312, 2013.
[16]
M. Hamburger, S. Hodes, and P. Barland, “The incidence and clinical significance of antibodies to extractable nuclear antigens,” American Journal of the Medical Sciences, vol. 273, no. 1, pp. 21–28, 1977.
[17]
Y. Zafrir, B. Gilburd, M. G. Carrasco, et al., “Evaluation of an automated chemiluminescent immunoassay kit for antinuclear antibodies in autoimmune diseases,” Immunologic Research, vol. 56, no. 2-3, pp. 451–456, 2013.
[18]
A. G. Juby, P. Davis, J. E. McElhaney, and S. Gravenstein, “Prevalence of selected autoantibodies in different elderly subpopulations,” British Journal of Rheumatology, vol. 33, no. 12, pp. 1121–1124, 1994.
[19]
J. G. Hanly, K. Thompson, G. McCurdy, L. Fougere, C. Theriault, and K. Wilton, “Measurement of autoantibodies using multiplex methodology in patients with systemic lupus erythematosus,” Journal of Immunological Methods, vol. 352, no. 1-2, pp. 147–152, 2010.
[20]
S. Kumble, L. Choi, C. Lopez-Muedano, and K. D. Kumble, “Microarray ELISA for autoantibody screening in connective tissue diseases,” Journal of Clinical and Diagnostic Research, vol. 6, no. 2, pp. 200–206, 2012.
[21]
L. Meheus, W. J. Van Venrooij, A. Wiik et al., “Multicenter validation of recombinant, natural and synthetic antigens used in a single multiparameter assay for the detection of specific anti- nuclear autoantibodies in connective tissue disorders,” Clinical and Experimental Rheumatology, vol. 17, no. 2, pp. 205–214, 1999.
[22]
C. Galperin, R. L. Coppel, and M. E. Gershwin, “Use of recombinant proteins in the diagnosis of autoimmune connective tissue diseases,” International Archives of Allergy and Immunology, vol. 111, no. 4, pp. 337–347, 1996.
[23]
C. Bordet, “Test performance of Inno-Lia Ana update in detection of the main autoantibodies involved in connective diseases,” Annales de Biologie Clinique, vol. 59, no. 6, pp. 767–768, 2001.
[24]
C. J. Froelich, J. Wallman, J. L. Skosey, and M. Teodorescu, “Clinical value of an integrated ELISA system for the detection of 6 autoantibodies (ssDNA, dsDNA, Sm, RNP/Sm, SSA, and SSB),” Journal of Rheumatology, vol. 17, no. 2, pp. 192–200, 1990.
[25]
C. Defendenti, F. Atzeni, M. F. Spina et al., “Clinical and laboratory aspects of Ro/SSA-52 autoantibodies,” Autoimmunity Reviews, vol. 10, no. 3, pp. 150–154, 2011.