全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Sonochemical Synthesis of Silver Nanoparticles Using Starch: A Comparison

DOI: 10.1155/2014/784268

Full-Text   Cite this paper   Add to My Lib

Abstract:

A novel approach was applied to synthesize silver nanoparticles using starch under sonication. Colloidal silver nanoparticles solution exhibited an increase of absorption from 420 to 440?nm with increase starch quantity. Transmission electron microscopy followed by selected area electron diffraction pattern analysis indicated the formation of spherical, polydispersed, amorphous, silver nanoparticles of diameter ranging from 23 to 97?nm with mean particle size of 45.6?nm. Selected area electron diffraction (SAED) confirmed partial crystalline and amorphous nature of silver nanoparticles. Silver nanoparticles synthesized in this manner can be used for synthesis of 2-aryl substituted benzimidazoles which have numerous biomedical applications. The optimized reaction conditions include 10?ml of 1?mM AgNO3, 25?mg starch, 11 pH range, and sonication for 20?min at room temperature. 1. Introduction Nanoscale materials have received considerable attention because their unusual optical, chemical, photoelectrochemical, and electronic properties differ significantly from those of atoms and molecules as well as those of bulk materials [1–3]. The synthesis of nanomaterials with the desired quality is one of the most exciting aspects in modern nanoscience and nanotechnology [4]. Colloidal nanoparticles are small in diameter but large in surface area and huge in current many exclusive medical and industrial applications such as biological engineering, catalysts, and electronic devices [5]. Colloidal silver nanoparticle (Ag-NP) with natural macromolecule can be fabricated by physical [6, 7] and chemical reduction [8–10] methods. Nowadays, biomass starch as a raw material for the synthesis of Ag-Nps has reflected significant superiority in some process. However, no literature is available on its preparation in starch at different pH and polysaccharide by ultrasonic field. The sonochemical methods are as follows: formation, development, and the implosion of the microcavities [11]. When solutions are exposed to ultrasonic irradiation, bubbles in the solution could be imploded by acoustic fields. Cavitation’s bubble collapse can also induce a shock wave in the solution and drive the rapid impact of the liquid to the surface of the particles [12]. Use of the sonoelectrochemical method for the preparation of spheres, rods, and dendrites shaped Ag-Nps with nitriloacetate (NTA) [13]. It was found that the electrolyte composition that comes along reaction time can greatly affect the shape and growth of the NPs. Branched silver structure with 440?nm and average diameter of 11.5?nm

References

[1]  L. J. Guo, X. Cheng, and C. F. Chou, “Fabrication of size-controllable nanofluidic channels by nanoimprinting and its application for DNA stretching,” Nano Letters, vol. 4, no. 1, pp. 69–73, 2004.
[2]  Q. Xu, B. D. Gates, and G. M. Whitesides, “Fabrication of metal structures with nanometer-scale lateral dimensions by sectioning using a microtome,” Journal of the American Chemical Society, vol. 126, no. 5, pp. 1332–1333, 2004.
[3]  F. Rosei, “Nanostructured surfaces: challenges and frontiers in nanotechnology,” Journal of Physics Condensed Matter, vol. 16, no. 17, pp. S1373–S1436, 2004.
[4]  D. Bhattacharya and R. K. Gupta, “Nanotechnology and potential of microorganisms,” Critical Reviews in Biotechnology, vol. 25, no. 4, pp. 199–204, 2005.
[5]  M. C. Daniel and D. Astruc, “Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology,” Chemical Reviews, vol. 104, no. 1, pp. 293–346, 2004.
[6]  R. Zamiri, B. Z. Azmi, M. Darroudi et al., “Preparation of starch stabilized silver nanoparticles with spatial self-phase modulation properties by laser ablation technique,” Applied Physics A, vol. 102, no. 1, pp. 189–194, 2011.
[7]  M. Darroudi, M. B. Ahmad, R. Zamiri et al., “Preparation and characterization of gelatin mediated silver nanoparticles by laser ablation,” Journal of Alloys and Compounds, vol. 509, no. 4, pp. 1301–1304, 2011.
[8]  N. M. Huang, H. N. Lim, S. Radiman et al., “Sucrose ester micellar-mediated synthesis of Ag nanoparticles and the antibacterial properties,” Colloids and Surfaces A, vol. 353, no. 1, pp. 69–76, 2010.
[9]  M. Darroudi, M. B. Ahmad, A. H. Abdullah, N. A. Ibrahim, and K. Shameli, “Effect of accelerator in green synthesis of silver nanoparticles,” International Journal of Molecular Sciences, vol. 11, no. 10, pp. 3898–3905, 2010.
[10]  M. Singh, I. Sinha, and R. K. Mandal, “Role of pH in the green synthesis of silver nanoparticles,” Materials Letters, vol. 63, no. 3-4, pp. 425–427, 2009.
[11]  A. Gedanken, “Sonochemistry and its application to nanochemistry,” Current Science, vol. 85, no. 12, pp. 1720–1722, 2003.
[12]  L. P. Jiang, S. Xu, J. M. Zhu, J. R. Zhang, J. J. Zhu, and H. Y. Chen, “Ultrasonic-assisted synthesis of monodisperse single-crystalline silver nanoplates and gold nanorings,” Inorganic Chemistry, vol. 43, no. 19, pp. 5877–5883, 2004.
[13]  J. Zhu, S. Liu, O. Palchik, Y. Koltypin, and A. Gedanken, “Shape-controlled synthesis of silver nanoparticles by pulse sonoelectrochemical methods,” Langmuir, vol. 16, no. 16, pp. 6396–6399, 2000.
[14]  R. Konwarh, N. Karak, C. E. Sawian, S. Baruah, and M. Mandal, “Effect of sonication and aging on the templating attribute of starch for “green” silver nanoparticles and their interactions at bio-interface,” Carbohydrate Polymers, vol. 83, no. 3, pp. 1245–1252, 2011.
[15]  Y. Nagata, Y. Watananabe, S. I. Fujita, T. Dohmaru, and S. Taniguchi, “Formation of colloidal silver in water by ultrasonic irradiation,” Journal of the Chemical Society, Chemical Communications, no. 21, pp. 1620–1622, 1992.
[16]  R. A. Salkar, P. Jeevanandam, S. T. Aruna, Y. Koltypin, and A. Gedanken, “The sonochemical preparation of amorphous silver nanoparticles,” Journal of Materials Chemistry, vol. 9, no. 6, pp. 1333–1335, 1999.
[17]  S. Liu, W. Huang, S. Chen, S. Avivi, and A. Gedanken, “Synthesis of X-ray amorphous silver nanoparticles by the pulse sonoelectrochemical method,” Journal of Non-Crystalline Solids, vol. 283, no. 1–3, pp. 231–236, 2001.
[18]  I. A. Wani, A. Ganguly, J. Ahmed, and T. Ahmad, “Silver nanoparticles: ultrasonic wave assisted synthesis, optical characterization and surface area studies,” Materials Letters, vol. 65, no. 3, pp. 520–522, 2011.
[19]  H. S. Shin, H. J. Yang, S. B. Kim, and M. S. Lee, “Mechanism of growth of colloidal silver nanoparticles stabilized by polyvinyl pyrrolidone in γ-irradiated silver nitrate solution,” Journal of Colloid and Interface Science, vol. 274, no. 1, pp. 89–94, 2004.
[20]  E. Filippo, A. Serra, A. Buccolieri, and D. Manno, “Green synthesis of silver nanoparticles with sucrose and maltose: morphological and structural characterization,” Journal of Non-Crystalline Solids, vol. 356, no. 6–8, pp. 344–350, 2010.
[21]  Y. K. Twu, Y. W. Chen, and C. M. Shih, “Preparation of silver nanoparticles using chitosan suspensions,” Powder Technology, vol. 185, no. 3, pp. 251–257, 2008.
[22]  I. Medina-Ramirez, S. Bashir, Z. Luo, and J. L. Liu, “Green synthesis and characterization of polymer-stabilized silver nanoparticles,” Colloids and Surfaces B, vol. 73, no. 2, pp. 185–191, 2009.
[23]  H. Bar, D. K. Bhui, G. P. Sahoo, P. Sarkar, S. P. De, and A. Misra, “Green synthesis of silver nanoparticles using latex of Jatropha curcas,” Colloids and Surfaces A, vol. 339, no. 1–3, pp. 134–139, 2009.
[24]  D. Philip, C. Unni, S. A. Aromal, and V. K. Vidhu, “Murraya Koenigii leaf-assisted rapid green synthesis of silver and gold nanoparticles,” Spectrochimica Acta A, vol. 78, no. 2, pp. 899–904, 2011.
[25]  D. Philip, “Mangifera Indica leaf-assisted biosynthesis of well-dispersed silver nanoparticles,” Spectrochimica Acta A, vol. 78, no. 1, pp. 327–331, 2011.
[26]  E. J. Guidelli, A. P. Ramos, M. E. D. Zaniquelli, and O. Baffa, “Green synthesis of colloidal silver nanoparticles using natural rubber latex extracted from Hevea brasiliensis,” Spectrochimica Acta A, vol. 82, no. 1, pp. 140–145, 2011.
[27]  D. K. Bozanic, V. Djokovic, J. Blanusa, P. S. Nair, M. K. Georges, and T. Radhakrishnan, “Preparation and properties of nano-sized Ag and Ag2S particles in biopolymer matrix,” European Physical Journal E, vol. 22, pp. 51–59, 2007.
[28]  Z. Shervani, Y. Ikushima, M. Sato et al., “Morphology and size-controlled synthesis of silver nanoparticles in aqueous surfactant polymer solutions,” Colloid and Polymer Science, vol. 286, no. 4, pp. 403–410, 2008.
[29]  N. Vigneshwaran, R. P. Nachane, R. H. Balasubramanya, and P. V. Varadarajan, “A novel one-pot 'green' synthesis of stable silver nanoparticles using soluble starch,” Carbohydrate Research, vol. 341, no. 12, pp. 2012–2018, 2006.
[30]  V. K. Sharma, R. A. Yngard, and Y. Lin, “Silver nanoparticles: green synthesis and their antimicrobial activities,” Advances in Colloid and Interface Science, vol. 145, no. 1-2, pp. 83–96, 2009.
[31]  A. A. Hebeish, M. H. El-Rafie, F. A. Abdel-Mohdy, E. S. Abdel-Halim, and H. E. Emam, “Carboxymethyl cellulose for green synthesis and stabilization of silver nanoparticles,” Carbohydrate Polymers, vol. 82, no. 3, pp. 933–941, 2010.
[32]  R. Konwarh, N. Karak, C. E. Sawian, S. Baruah, and M. Mandal, “Effect of sonication and aging on the templating attribute of starch for “green” silver nanoparticles and their interactions at bio-interface,” Carbohydrate Polymers, vol. 83, no. 3, pp. 1245–1252, 2011.
[33]  M. A. Chari, D. Shobha, E. R. Kenawy, S. S. Al-Deyab, B. V. S. Reddy, and A. Vinu, “Nanoporous aluminosilicate catalyst with 3D cage-type porous structure as an efficient catalyst for the synthesis of benzimidazole derivatives,” Tetrahedron Letters, vol. 51, no. 39, pp. 5195–5199, 2010.
[34]  H. Cong, C. F. Becker, S. J. Elliott, M. W. Grinstaff, and J. A. Porco Jr., “Silver nanoparticle-Catalyzed diels-alder cycloadditions of 2′-hydroxychalcones,” Journal of the American Chemical Society, vol. 132, no. 21, pp. 7514–7518, 2010.
[35]  A. Grirrane, A. Corma, and H. García, “Gold-catalyzed synthesis of aromatic azo compounds from anilines and nitroaromatics,” Science, vol. 322, no. 5908, pp. 1661–1664, 2008.
[36]  S. G. Sudrik, N. K. Chaki, V. B. Chavan et al., “Silver nanocluster redox-couple-promoted nonclassical electron transfer: an efficient electrochemical wolff rearrangement of α-diazoketones,” Chemistry, vol. 12, no. 3, pp. 859–864, 2006.
[37]  R. Xu, D. Wang, J. Zhang, and Y. Li, “Shape-dependent catalytic activity of silver nanoparticles for the oxidation of styrene,” Chemistry, vol. 1, no. 6, pp. 888–893, 2006.
[38]  D. P. Debecker, C. Faure, M. E. Meyre, A. Dené, and E. M. Gaigneaux, “A new bio-inspired route to metal-nanoparticle-based heterogeneous catalysts,” Small, vol. 4, no. 10, pp. 1806–1812, 2008.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133