Zuota is regarded as the king of Tibetan medicine. However, due to the confidentiality of this precious medicine, the scientific characterization of Zuota is very scarce, which limits the pharmacology and biosafety studies of Zuota. Herein, we collected four different Zuota samples from Tibet, Qinghai, Gansu, and Sichuan and characterized them by multiple techniques. Our results showed that Zuota was mainly an inorganic mixture of HgS, sulfur, and graphite. Morphologically, Zuota samples were composed of nanoparticles, which further aggregated into microsized particles. Chemically, the majorities of Zuota were S and Hg (in the forms of HgS and pure sulfur). All samples contained pure sulfur with orthorhombic crystalline. Zuota from Qinghai province had different HgS crystalline, namely, hexagonal crystalline. The others were all face-centered cubic crystalline. Carbon in Zuota NPs was in the form of graphite. The implication to future studies of Zuota was discussed. 1. Introduction Tibetan medicine has a history of over 3800 years [1]. Known as the king of Tibetan medicine, Zuota is the transliteration of Tibetan language “Renqing Ouqu Zuozhu Qinmu.” Here, “Zuo” means refining, and “ta” means grey powder. Thus, Zuota means burning to powder. Zuota has been used as an essential and key component of Renqing series drugs in Tibetan medicine for 1200 years [2, 3]. Zuota cannot be used as medicine alone, but it shows magic effect when used as supplementary material to other medicines [4]. Based on Zuota, many drugs have been developed, such as Qi Shi Wei Zhen Zhu Wan, Er Shi Wu Wei Zhen Zhu Wan, Er Shi Wu Wei Shan Hu Wan, Er Shi Wu Wei Song Shi Wan, Er Shi Wu Wei Er Cha Wan, Renqing Chang Jue, Renqing Mang Jue, Zuo Zhu Da Xi, and Zhi Tuo Jie Bai Wan. These medicines are applied in treating digestive diseases, cardiovascular and cerebrovascular diseases, hepatic and gall diseases, food poisoning, pa-disease, leprosy, and so on [5–10]. Zuota shows very good performance in treating diseases of skin, knuckle, marrow, and sclerotin [2, 3]. Zuota is also beneficial in replenishing blood, activating blood, and prolonging the life according to Tibetan medicine theory [2, 3, 11, 12]. The proposed effects of Zuota in these medicines are enhancing the pharmaceutical effects and reducing the toxicity [2, 3]. Recently, Zuota has been collected in the Chinese Intangible Cultural Heritage [13]. However, nearly nothing is known about Zuota from the modern scientific perspective, because Zuota is always treated as the top secret of Tibetan medicine. According to the
References
[1]
E. ?u?kin, J. Lipozen?i?, J. Pucarin-Cvetkovi? et al., “Ancient medicine A,” Acta Dermatovenerologica Croatica, vol. 16, no. 3, pp. 149–157, 2008.
[2]
Y. Yutuo, Medical Canon in Four Sections (Si Bu Yi Dian, Chinese Version), translated by Y. Li, People’s Publishing House, Beijing, China, 1983.
[3]
D. Luo, New Repair Jingzhu Materia Medica (Jing Zhu Ben Cao, Chinese Version), translated by J. Mao D. Luo, Z. Wang, and S. Ma, Shanghai Science and Technology Press, Shanghai, China, 1986.
[4]
S. Wang, “Clinical observation of Tibetan drug with Songshi-25 pill for chronic hepatitis B,” China Journal of Chinese Materia Medica, vol. 5, no. 4, p. 10, 1999.
[5]
B. Yang, Y. Zhang, T. Huang, et al., “Clinical observation of chronic superficial gastritis (Syndrome differentiation of TCM Being hepatic Qi attacking stomach) Tibetan drug Zuo-ta-de-zi-ma, attaching with clinical report of 149 cases,” Journal of Chengdu University of Traditional Chinese Medicine, vol. 24, no. 1, pp. 14–16, 2001.
[6]
M.-C. Wan, J.-S. Lou, and Y.-W. Qin, “Application of Rannasangpei in the treatment of cardiovascular and cerebrovascular diseases,” Pharmaceutical Care and Research, vol. 9, no. 4, pp. 283–285, 2009.
[7]
C. Zhang, X. Pan, W. Qiu, B. Shi, J. Chang, and Y. Ni, “59 clinical reports of Tibetan drug with Songshi-25 pill for chronic hepatitis B,” Chinese Journal of Integrated Traditional and Western Medicine on Liver Diseases, vol. 9, no. 3, pp. 28–29, 1999.
[8]
C. Limao and J. Qie, “62 clinical reports of dispersing stagnated liver qi for regulating stomach and detoxification for chronic gastritis treatment,” Chinese Medicine Modern Distance Education of China, vol. 7, no. 11, pp. 88–89, 2009.
[9]
J. Yang, J. Deng, D. Li, and J. Li, “Jintang village investigation: one consideration about the cause of Pa-disease,” Chinese Journal of Endemiology, vol. 19, no. 1, pp. 36–40, 2000.
[10]
Y. Zhang and Y. Xiang, “To analyze the usage of toxicant in traditional Tibetan medicine based on 64 dermatological formulas by oral administration,” World Science and Technology/Modernization of Traditional Chinese Medicine and Materia Medica, vol. 7, pp. 64–66, 2005.
[11]
B. Yang, “The pharmacology and safety of mercury in Tibetan medicine Zuota,” Tibet Research, no. 1, pp. 74–80, 2004.
[12]
Z. Chen, X. Pu, W. Li, K. Wu, G. Lan, and J. Cui, “Influence of Tibetan medicine Zuota on the life of fruit fly,” Lishizhen Medicine and Materia Medica Research, vol. 22, no. 2, pp. 422–423, 2011.
L. Suo, “Processing of Zuota,” Journal of Medicine & Pharmacy of Chinese Minorities, no. 5, p. 40, 2007.
[15]
B. A. Bowman and R. M. Russell, Present Knowledge in Nutrition, The International Life Sciences Institute, Washington, DC, USA, 9th edition, 2006.
[16]
J. M. Llobet, G. Falcó, C. Casas, A. Teixidó, and J. L. Domingo, “Concentrations of arsenic, cadmium, mercury, and lead in common foods and estimated daily intake by children, adolescents, adults, and seniors of Catalonia, Spain,” Journal of Agricultural and Food Chemistry, vol. 51, no. 3, pp. 838–842, 2003.
[17]
G. Dou, “Analysing the toxicity of Tibetan pharmacist-prepared medicine in “Zuo Tai” as well as its compatibility,” Journal of Qinghai Junior Teachers’ College, no. 4, pp. 72–75, 2005.
[18]
X. Li, W. Feng, Q. Ma, J. Zhu, C. Nima, and R. Ge, “Preliminary study on the absorption and excretion of mercury in Tibetan medicine Zuotai in rats,” Lishizhen Medicine and Materia Medica Research, vol. 21, no. 2, pp. 290–292, 2010.
[19]
A. Jiang, C. Zhang, J. Wang et al., “Pharmacodynamics research of Tibetan medicine Zuotai,” Lishizhen Medicine and Materia Medica Research, vol. 20, no. 8, pp. F3–F4, 2009.
[20]
X.-Y. Li, W.-L. Feng, J.-B. Zhu, C.-R. Nima, and R.-L. Ge, “Effect of Tibetan medicine Zuotai on in vivo pharmacokinetics of crocin-1 in rats,” Chinese Traditional and Herbal Drugs, vol. 40, no. 9, pp. 1425–1428, 2009.
[21]
Y. Zeng, Y. He, Y. Liu, Z. Wang, and Y. Zhang, “Pharmacological effect of Tibetan medicine Zuota to central nervous system,” Journal of Sichuan of Traditional Chinese Medicine, no. 11, pp. 36–37, 2005.
[22]
Y. Zeng, P. Wang, Y. He, and Y. Zhang, “Determination of Hg in Zuota (a Tibetan medicine) by HPLC,” Central South Pharmacy, vol. 6, no. 1, pp. 60–63, 2008.
[23]
G. Lan, Z. Chen, W. Li, K. Wu, J. Cui, and L. Piao, “Analysis on chemical constituents of Tibetan medcine Zogta,” Lishizhen Medicine and Mataeria Medica Research, vol. 21, no. 12, pp. 3209–3211, 2010.
[24]
L. Yan, “Microstructure and component of Tibetan medicine Zuotai,” China Tibetology, no. 3, pp. 150–152, 2007.
[25]
L. Yan, X. Ma, and Q. Zhu, “Inorganic components analysis of Tibetan medicine Zuotai,” China Journal of Chinese Materia Medica, vol. 32, no. 2, pp. 159–160, 2007.
[26]
L. Yan and X. Ma, “The chemical and structural analysis of carbon in Ttibetan medicine Zuotai,” Chinese Journal of Ethnomedicine and Ethnopharmacy, vol. 19, no. 5, pp. 1–2, 2010.
[27]
T. L. Doane and C. Burda, “The unique role of nanoparticles in nanomedicine: Imaging, drug delivery and therapy,” Chemical Society Reviews, vol. 41, no. 7, pp. 2885–2911, 2012.
[28]
M. E. Lobatto, V. Fuster, Z. A. Fayad, and W. J. M. Mulder, “Perspectives and opportunities for nanomedicine in the management of atherosclerosis,” Nature Reviews Drug Discovery, vol. 10, no. 11, pp. 835–852, 2011.
[29]
R. Mout, D. F. Moyano, S. Rana, and V. M. Rotello, “Surface functionalization of nanoparticles for nanomedicine,” Chemical Society Reviews, vol. 41, no. 7, pp. 2539–2544, 2012.
[30]
E. Sasmaz, Fundamental understanding of mercury removal from coal combustion [Ph.D. dissertation], Stanford University, 2011.
[31]
G. Hota, S. B. Idage, and K. C. Khilar, “Characterization of nano-sized CdS-Ag2S core-shell nanoparticles using XPS technique,” Colloids and Surfaces A, vol. 293, no. 1-3, pp. 5–12, 2007.
[32]
S.-T. Yang, S. Chen, Y. Chang, A. Cao, Y. Liu, and H. Wang, “Removal of methylene blue from aqueous solution by graphene oxide,” Journal of Colloid and Interface Science, vol. 359, no. 1, pp. 24–29, 2011.
[33]
S. Yang, J. Luo, J. Liu et al., “Carbon nanoparticles for cationic dye (methylene blue) removal from aqueous solution,” Nanoscience and Nanotechnology Letters, vol. 4, no. 8, pp. 839–842, 2012.