Traditional synthesis of silver nanoparticles using chemical methods produces toxic substances. In contrast biological synthesis is regarded as a safe and nontoxic process but the major drawback of biological synthesis is, this process is slow. In the present investigation, we developed a rapid and green synthesis of silver nanoparticles employing a pigment produced by Streptomyces coelicolor klmp33 in just 90?s. The silver nanoparticles were characterized by UV-visible spectroscopy, transmission electron microscopy (TEM), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR). The biobased synthesis developed in this method is a safe, rapid, and appropriate way for bulky synthesis of silver nanoparticles. 1. Introduction Nanotechnology is expected to be the basis of many important technological innovations in the 21st century [1]. Various physical and chemical methods were reported for the synthesis of silver nanoparticles, but most of these methods cause potential environmental and biological hazards [2]. Compared to physical and chemical methods, biological synthesis using microbes and plants was regarded as a safe and ecofriendly process [3]. Several biological synthesis methods, using microbes like Cladosporium cladosporioides [4] and Fusarium oxysporum [5], have been suggested as safe, cost-effective, possible ecofriendly ways and alternatives to chemical and physical methods, but these methods also have the drawback that these processes were rather slow [6]. Parallel to microbes mediated synthesis, several rapid plant mediated synthesis method using crude plant parts extracts like Sorbus aucuparia [7] and Chenopodium album [8] were also reported, but large scale usage of plants for industrial purpose synthesis may lead to loss of valuable species [9]. Therefore, there is a need to develop a rapid and ecofriendly process for the synthesis of silver nanoparticles. In our earlier study, we reported synthesis of silver nanoparticles using pigment produced by Streptomyces coelicolor klmp33 by photoirradiation method in 20?min, but still we think the synthesis is more time consuming [10]. So, we explored different methods using the same pigment produced by S. coelicolor klmp33 to overcome this problem. Among different methods, microwave assisted synthesis showed promising result; the advantage of microwave irradiation over conventional biological synthesis is the improvement in rate kinetics of the reaction due to rapid heating and penetration involved, which may result in a narrow distribution of the particle size [11, 12].
References
[1]
K. S. Mukunthan, E. K. Elumalai, T. N. Patel, and V. R. Murty, “Catharanthus roseus: a natural source for the synthesis of silver nanoparticles,” Asian Pacific Journal of Tropical Biomedicine, vol. 1, no. 4, pp. 270–274, 2011.
[2]
U. K. Parashar, P. S. Saxena, and A. Srivastava, “Bioinspired synthesis of silver nanoparticles,” Digest Journal of Nanomaterials and Biostructures, vol. 4, no. 1, pp. 159–166, 2009.
[3]
S. He, Y. Zhang, Z. Guo, and N. Gu, “Biological synthesis of gold nanowires using extract of Rhodopseudomonas capsulata,” Biotechnology Progress, vol. 24, no. 2, pp. 476–480, 2008.
[4]
D. S. Balaji, S. Basavaraja, R. Deshpande, D. B. Mahesh, B. K. Prabhakar, and A. Venkataraman, “Extracellular biosynthesis of functionalized silver nanoparticles by strains of Cladosporium cladosporioides fungus,” Colloids and Surfaces B, vol. 68, no. 1, pp. 88–92, 2009.
[5]
N. Durán, P. D. Marcato, O. L. Alves, G. I. H. De Souza, and E. Esposito, “Mechanistic aspects of biosynthesis of silver nanoparticles by several Fusarium oxysporum strains,” Journal of Nanobiotechnology, vol. 3, article 8, 2005.
[6]
N. Saifuddin, C. W. Wong, and A. A. N. Yasumira, “Rapid biosynthesis of silver nanoparticles using culture supernatant of bacteria with microwave irradiation,” E-Journal of Chemistry, vol. 6, no. 1, pp. 61–70, 2009.
[7]
S. P. Dubey, M. Lahtinen, H. S?rkk?, and M. Sillanp??, “Bioprospective of Sorbus aucuparia leaf extract in development of silver and gold nanocolloids,” Colloids and Surfaces B, vol. 80, no. 1, pp. 26–33, 2010.
[8]
A. D. Dwivedi and K. Gopal, “Biosynthesis of silver and gold nanoparticles using Chenopodium album leaf extract,” Colloids and Surfaces A, vol. 369, no. 1–3, pp. 27–33, 2010.
[9]
R. R?is?nen, P. Nousiainen, and P. H. Hynninen, “Dermorubin and 5-chlorodermorubin natural anthraquinone carboxylic acids as dyes for wool,” Textile Research Journal, vol. 72, no. 11, pp. 973–976, 2002.
[10]
D. Manikprabhu and K. Lingappa, “Antibacterial activity of silver nanoparticles against methicillin-resistant Staphylococcus aureus synthesized using model Streptomyces sp. pigment by photo-irradiation method,” Journal of Pharmacy Research, vol. 6, pp. 255–260, 2013.
[11]
F.-K. Liu, P.-W. Huang, Y.-C. Chang, F.-H. Ko, and T.-C. Chu, “Combining optical lithography with rapid microwave heating for the selective growth of Au/Ag bimetallic core/shell structures on patterned silicon wafers,” Langmuir, vol. 21, no. 6, pp. 2519–2525, 2005.
[12]
H. Xu, L. Zeng, S. Xing, Y. Xian, and L. Jin, “Microwave-irradiated synthesized platinum nanoparticles/carbon nanotubes for oxidative determination of trace arsenic(III),” Electrochemistry Communications, vol. 10, no. 4, pp. 551–554, 2008.
[13]
D. Manikprabhu and K. Lingappa, “ actinorhodin a natural and attorney source for synthetic dye to detect acid production of fungi,” Saudi Journal of Biological Sciences, vol. 20, pp. 163–168, 2013.
[14]
K. N. Thakkar, S. S. Mhatre, and R. Y. Parikh, “Biological synthesis of metallic nanoparticles,” Nanomedicine, vol. 6, no. 2, pp. 257–262, 2010.
[15]
T. C. Prathna, N. Chandrasekaran, A. M. Raichur, and A. Mukherjee, “Biomimetic synthesis of silver nanoparticles by Citrus limon (lemon) aqueous extract and theoretical prediction of particle size,” Colloids and Surfaces B, vol. 82, no. 1, pp. 152–159, 2011.
[16]
R. Bhat, R. Deshpande, S. V. Ganachari, D. S. Huh, and A. Venkataraman, “Photo-irradiated biosynthesis of silver nanoparticles using edible mushroom Pleurotus florida and their antibacterial activity studies,” Bioinorganic Chemistry and Applications, vol. 2011, Article ID 650979, 2011.
[17]
S. Basavaraja, S. D. Balaji, A. Lagashetty, A. H. Rajasab, and A. Venkataraman, “Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium semitectum,” Materials Research Bulletin, vol. 43, no. 5, pp. 1164–1170, 2008.
[18]
Z. Shao-Peng, T. Shao-Chun, and M. Xiang-Kang, “Monodisperse silver nanoparticles synthesized by a microwave-assisted method,” Chinese Physics Letters, vol. 26, Article ID 078101, 4 pages, 2009.