全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Novel Organotin(IV) Schiff Base Complexes with Histidine Derivatives: Synthesis, Characterization, and Biological Activity

DOI: 10.1155/2013/502713

Full-Text   Cite this paper   Add to My Lib

Abstract:

Five novel tin Schiff base complexes with histidine analogues (derived from the condensation reaction between L-histidine and 3,5-di-tert-butyl-2-hydroxybenzaldehyde) have been synthesized and characterized. Characterization has been completed by IR and high-resolution mass spectroscopy, 1D and 2D solution NMR (1H, 13C??and 119Sn), as well as solid state 119Sn NMR. The spectroscopic evidence shows two types of structures: a trigonal bipyramidal stereochemistry with the tin atom coordinated to five donating atoms (two oxygen atoms, one nitrogen atom, and two carbon atoms belonging to the alkyl moieties), where one molecule of ligand is coordinated in a three dentate fashion. The second structure is spectroscopically described as a tetrahedral tin complex with four donating atoms (one oxygen atom coordinated to the metal and three carbon atoms belonging to the alkyl or aryl substituents), with one molecule of ligand attached. The antimicrobial activity of the tin compounds has been tested against the growth of bacteria in vitro to assess their bactericidal properties. While pentacoordinated compounds 1, 2, and 3 are described as moderate effective to noneffective drugs against both Gram-positive and Gram-negative bacteria, tetracoordinated tin(IV) compounds 4 and 5 are considered as moderate effective and most effective compounds, respectively, against the methicillin-resistant Staphylococcus aureus strains (Gram-positive). 1. Introduction The use of metal complexes as chemotherapeutic agents in the treatment of illness, which are a major public health concern, appears as a very attractive alternative. The success of cisplatin for the treatment of testicular and ovarian cancer attracted research attention to other metal-based antineoplastic agents. Metal-based compounds are of particular interest due to their physical and chemical properties. Properties such as ligand exchange rates, redox properties, oxidation states, coordination affinities, solubility, biodisponibility, and biodistribution could be modified in order to increase the therapeutic effect while reducing the side effects. Although the design of a metal-based compound with good therapeutic index is still rather empirical, a number of potential metal-based bactericide compounds have been fully described in the literature. The evidence about specific or selective bonding of metals and organometallic species to donor sites in biological structures is very limited, so trustable mechanisms of biological activity and valid structure-activity relationships are limited as well. One approach that

References

[1]  S. Roy, K. D. Hagen, P. U. Maheswari et al., “Phenanthroline derivatives with improved selectivity as DNA-targeting anticancer or antimicrobial drugs,” ChemMedChem, vol. 3, no. 9, pp. 1427–1434, 2008.
[2]  L. Pellerito and L. Nagy, “Organotin(IV)n+ complexes formed with biologically active ligands: equilibrium and structural studies, and some biological aspects,” Coordination Chemistry Reviews, vol. 224, no. 1–2, pp. 111–150, 2002.
[3]  L. Casella and M. Gullotti, “Coordination modes of histidine: 4. Coordination structures in the copper(II)-L-histidine (1:2) system,” Journal of Inorganic Biochemistry, vol. 18, no. 1, pp. 19–31, 1983.
[4]  R. I. Henkin, Metal-Albumin-Amino Acid Interactions: Chemical and Physiological Interrelationships, Plenum Publishing, New York, NY, USA, 1974.
[5]  A. Garza-Ortiz, P. U. Maheswari, M. Siegler, A. L. Spek, and J. Reedijk, “Ruthenium(III) chloride complex with a tridentate bis(arylimino)pyridine ligand: synthesis, spectra, X-ray structure, 9-ethylguanine binding pattern, and in vitro cytotoxicity,” Inorganic Chemistry, vol. 47, no. 15, pp. 6964–6973, 2008.
[6]  M. Aslam, I. Anis, N. Afza, B. Ali, and M. R. Shah, “Synthesis, characterization and biological activities of a bidentate schiff base ligand: N,N′-Bis(1-phenylethylidene)ethane-1,2-diamine and its transition metals (II) complexes,” Journal of the Chemical Society of Pakistan, vol. 34, p. 391, 2012.
[7]  F. Kayser, M. Biesemans, M. Gielen, and R. Willem, “Characterization of the dibutylstannylene derivative of pyridoxine by proton detected 2D heteronuclear correlation NMR,” Magnetic Resonance in Chemistry, vol. 32, no. 6, pp. 358–360, 1994.
[8]  J. C. Martins, R. Willem, and M. Biesemans, “A comparative investigation of the consistent valence and extensible systematic force fields. A case study on the conformation of erythromycin A in benzene,” Journal of the Chemical Society, vol. 2, no. 7, pp. 1513–1520, 1999.
[9]  C. Camacho-Camacho, I. Rojas-Oviedo, M. A. Paz-Sandoval et al., “Synthesis, structural characterization and cytotoxic activity of organotin derivatives of indomethacin,” Applied Organometallic Chemistry, vol. 22, no. 3, pp. 171–176, 2008.
[10]  M. Gielen, “Review: organotin compounds and their therapeutic potential: a report from the Organometallic Chemistry Department of the Free University of Brussels,” Applied Organometallic Chemistry, vol. 16, no. 9, pp. 481–494, 2002.
[11]  V. Valla and M. Bakola-Christianopoulou, “Chemical aspects of organotin derivatives of beta-diketones, quinonoids, steroids and some currently used drugs: a review of the literature with emphasis on the medicinal potential of organotins,” Synthesis and Reactivity in Inorganic and Metal-Organic Chemistry, vol. 37, pp. 507–525, 2007.
[12]  B. Y. K. Ho and J. J. Zuckerman, “Trialkyltin derivatives of amino acids and dipeptides,” Inorganic Chemistry, vol. 12, pp. 1552–1561, 1973.
[13]  H. Bruckner and K. Hartel, German Patent 1, 061, 561, 1959.
[14]  M. Frankel, D. Gertner, D. Wagner, and A. Zilkha, “Organotin esters of amino acids and their use in peptide syntheses,” Journal of Organic Chemistry, vol. 30, no. 5, pp. 1596–1599, 1965.
[15]  B. Y. K. Ho and J. J. Zuckerman, “Structure organotin chemistry,” Journal of Organometallic Chemistry, vol. 49, no. 1, pp. 1–84, 1973.
[16]  A. Hamdan-Partida, T. Sainz-Espu?es, and J. Bustos-Martínez, “Characterization and persistence of Staphylococcus aureus strains isolated from the anterior nares and throats of healthy carriers in a mexican community,” Journal of Clinical Microbiology, vol. 48, pp. 1701–1705, 2010.
[17]  National Committee for Clinical Laboratory Standards, Document: M2-A9. National Committee for Clinical Laboratory Standards, Wayne, PA, 2006.
[18]  C. Camacho-Camacho, I. Rojas-Oviedo, A. Garza-Ortiz, J. Cardenas, R. Alfredo Toscano, and R. Gavino, “Synthesis, structural characterization and in vitro cytotoxic activity of novel polymeric triorganotin(IV) complexes of urocanic acid,” Applied Organometallic Chemistry, vol. 27, no. 1, pp. 45–51, 2013.
[19]  B. S. Manhas and A. K. Trikha, “Relationships between the direction of shifts in the carbon-oxygen stretching frequencies of carboxylate complexes and the type of carboxylate coordination,” Journal-Indian Chemical Society, vol. 59, p. 315, 1982.
[20]  K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, Wiley, New York, NY, USA, 1980.
[21]  M. Gielen, “Tin-based antitumour drugs,” Coordination Chemistry Reviews, vol. 151, pp. 41–51, 1996.
[22]  M. Pellei, S. Alidori, F. Benetollo et al., “Di- and tri-organotin(IV) complexes of the new bis(1-methyl-1H-imidazol-2-ylthio)acetate ligand and the decarboxylated analogues,” Journal of Organometallic Chemistry, vol. 693, no. 6, pp. 996–1004, 2008.
[23]  F. E. Smith, R. C. Hynes, T. T. Ang, L. E. Khoo, and G. Eng, “The synthesis and structural characterization of a series of pentacoordinate diorganotin(IV) N-arylidene-α-amino acid complexes,” Canadian Journal of Chemistry, vol. 70, no. 4, pp. 1114–1120, 1992.
[24]  N. Kobakhidze, N. Farfan, M. Romero et al., “New pentacoordinated Schiff-base diorganotin(IV) complexes derived from nonpolar side chain α-amino acids,” Journal of Organometallic Chemistry, vol. 695, no. 8, pp. 1189–1199, 2010.
[25]  C. Camacho-Camacho, A. Esparza-Ruiz, A. Vásquez-Badillo, H. N?th, A. Flores-Parra, and R. Contreras, “Fused hexacyclic tin compounds derived from 3-(3,5-di-t-butyl-2-hydroxy-phenylimino)-3H-phenoxazin-2-ol,” Journal of Organometallic Chemistry, vol. 694, no. 5, pp. 726–730, 2009.
[26]  M. Gielen, M. Biesemans, and R. Willem, “Organotin compounds: from kinetics to stereochemistry and antitumour activities,” Applied Organometallic Chemistry, vol. 19, pp. 440–450, 2005.
[27]  M. Gielen and E. R. T. Tiekink, 50Sn Tin Compounds and Their Therapeutic Potential, John Wiley & Sons, Chichester, UK, 2005.
[28]  R. Willem, A. Bouhdid, M. Biesemans et al., “Synthesis and characterization of triphenyl- and tri-n-butyltin pentafluorobenzoates, -phenylacetates and -cinnamates. X-ray structure determination of tri-n-butyltin pentafluorocinnamate,” Journal of Organometallic Chemistry, vol. 514, no. 1-2, pp. 203–212, 1996.
[29]  R. Willem, I. Verbruggen, M. Gielen et al., “Correlating M?ssbauer and solution- and solid-state 117Sn NMR data with x-ray diffraction structural data of triorganotin 2-[(E)-2-(2-hydroxy-5-methylphenyl)-1-diazenyl]benzoates,” Organometallics, vol. 17, no. 26, pp. 5758–5766, 1998.
[30]  K. C. Molloy, Bioorganotin Compounds, John Wiley and Sons, London, UK, 1989.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133