全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Cytotoxicity and In Vitro Antileishmanial Activity of Antimony (V), Bismuth (V), and Tin (IV) Complexes of Lapachol

DOI: 10.1155/2013/961783

Full-Text   Cite this paper   Add to My Lib

Abstract:

Leishmania amazonensis is the etiologic agent of the cutaneous and diffuse leishmaniasis often associated with drug resistance. Lapachol [2-hydroxy-3-(3′-methyl-2-butenyl)-1,4-naphthoquinone] displays a wide range of antimicrobial properties against many pathogens. In this study, using the classic microscopic in vitro model, we have analyzed the effects of a series of lapachol and chlorides complexes with antimony (V), bismuth (V), and tin (IV) against L. amazonensis. All seven compounds exhibited antileishmanial activity, but most of the antimony (V) and bismuth (V) complexes were toxic against human HepG2 cells and murine macrophages. The best IC50 values (0.17 0.03 and 0.10 0.11? g/mL) were observed for Tin (IV) complexes (3) [(Lp)(Ph3Sn)] and (6) (Ph3SnCl2), respectively. Their selective indexes (SIs) were 70.65 and 120.35 for HepG2 cells, respectively. However, while analyzing murine macrophages, the SI decreased. Those compounds were moderately toxic for HepG2 cells and toxic for murine macrophages, still underlying the need of chemical modification in this class of compounds. 1. Introduction Leishmania amazonensis, a New World species, has been identified as a dermotropic species often associated with drug resistance [1]. Current antileishmanial therapies are toxic to human and some simply fail [2, 3]. In the Americas, for over six decades, parenteral administrations of pentavalent antimonials (Sb-V), sodium stibogluconate (Pentostam), and meglumine antimoniate (Glucantime) have been used for treating leishmaniasis. In places where resistance to antimonials is common, such as India, other chemotherapeutic treatments include amphotericin B and pentamidine [2, 4]. Therefore, the absence of a low toxic and safe oral drug still underlines the need for new antileishmanial compounds. Lapachol,?[2-hydroxy-3-(3′-methyl-2-butenyl)-1,4-naphthoquinone] (Figure 1) is a natural compound extracted from the core of Bignoniaceae trees. In Leishmania, lapachol analogues, derivatives, and complexes have been tested by several groups. Lapachol, isolapachol, and some of their derivatives were active in vitro and in vivo against Leishmania braziliensis and L. amazonensis, respectively [5]. Bismuth (III), antimony (V), and tin (IV) complexes were active against Helicobacter pylori, Leishmania major, and Leishmania donovani, respectively [6–8]. Figure 1: Structures of lapachol metal (Bi, Sb, and Sn) complexes ( 1– 3) and chloride metal (Bi, Sb, and Sn) compounds ( 4– 6) and lapachol ( 7). Legend: Bi = bismuth, Sb = antimony, and Sn = tin. The design of bifunctional

References

[1]  A. Bittencourt, A. Barral, A. R. de Jesus, R. P. de Almeida, and G. Grimaldi Júnior, “In situ identification of Leishmania amazonensis associated with diffuse cutaneous leishmaniasis in Bahia, Brazil,” Memórias do Instituto Oswaldo Cruz, vol. 84, no. 4, pp. 585–586, 1989.
[2]  S. L. Croft, S. Sundar, and A. H. Fairlamb, “Drug resistance in leishmaniasis,” Clinical Microbiology Reviews, vol. 19, no. 1, pp. 111–126, 2006.
[3]  S. L. Croft, K. Seifert, and V. Yardley, “Current scenario of drug development for leishmaniasis,” Indian Journal of Medical Research, vol. 123, no. 3, pp. 399–410, 2006.
[4]  J. Mishra, A. Saxena, and S. Singh, “Chemotherapy of leishmaniasis: past, present and future,” Current Medicinal Chemistry, vol. 14, no. 10, pp. 1153–1169, 2007.
[5]  N. M. F. Lima, C. S. Correia, L. L. Leon et al., “Antileishmanial activity of lapachol analogues,” Memórias do Instituto Oswaldo Cruz, vol. 99, no. 7, pp. 757–761, 2004.
[6]  P. C. Andrews, R. L. Ferrero, P. C. Junk et al., “Bismuth(iii) complexes derived from non-steroidal anti-inflammatory drugs and their activity against Helicobacter pylori,” Dalton Transactions, vol. 39, no. 11, pp. 2861–2868, 2010.
[7]  B. Raychaudhury, S. Banerjee, S. Gupta, R. V. Singh, and S. C. Datta, “Antiparasitic activity of a triphenyl tin complex against Leishmania donovani,” Acta Tropica, vol. 95, no. 1, pp. 1–8, 2005.
[8]  P. C. Andrews, R. Frank, P. C. Junk, L. Kedzierski, I. Kumar, and J. G. MacLellan, “Anti-Leishmanial activity of homo- and heteroleptic bismuth(III) carboxylates,” Journal of Inorganic Biochemistry, vol. 105, no. 3, pp. 454–461, 2011.
[9]  L. G. Oliveira, M. M. Silva, F. C. Paula et al., “Antimony(V) and bismuth(V) complexes of lapachol: synthesis, crystal structure and cytotoxic activity,” Molecules, vol. 16, no. 12, pp. 10314–10323, 2011.
[10]  M. N. Rocha, C. Margonari, I. M. Presot, and R. P. Soares, “Evaluation of 4 polymerase chain reaction protocols for cultured Leishmania spp. typing,” Diagnostic Microbiology and Infectious Disease, vol. 68, no. 4, pp. 401–409, 2010.
[11]  R. P. P. Soares, M. E. Macedo, C. Ropert et al., “Leishmania chagasi: lipophosphoglycan characterization and binding to the midgut of the sand fly vector Lutzomyia longipalpis,” Molecular and Biochemical Parasitology, vol. 121, no. 2, pp. 213–224, 2002.
[12]  D. O. D. V. M. Ernest, M. C. D. V. M. Brenda, and A. A. McWilliam, Guide to the Care and Use of Experimental Animals, Canadian Council on Animal Care, 1993.
[13]  M. N. Rocha, C. M. Correa, M. N. Melo et al., “An alternative in vitro drug screening test using Leishmania amazonensis transfected with red fluorescent protein,” Diagnostic Microbiology and Infectious Diseases, vol. 75, no. 3, pp. 282–291, 2013.
[14]  J. D. Berman and L. S. Lee, “Activity of antileishmanial agents against amastigotes in human monocyte-derived macrophages and in mouse peritoneal macrophages,” Journal of Parasitology, vol. 70, no. 2, pp. 220–225, 1984.
[15]  A. C. Pinheiro, M. N. Rocha, P. M. Nogueira et al., “Synthesis, cytotoxicity, and in vitro antileishmanial activity of mono-t-butyloxycarbonyl-protected diamines,” Diagnostic Microbiology and Infectious Disease, vol. 71, no. 3, pp. 273–278, 2011.
[16]  G. J. Darlington, J. H. Kelly, and G. J. Buffone, “Growth and hepatospecific gene expression of human hepatoma cells in a defined medium,” In Vitro Cellular & Developmental Biology, vol. 23, no. 5, pp. 349–354, 1987.
[17]  F. Denizot and R. Lang, “Rapid colorimetric assay for cell growth and survival—modifications to the tetrazolium dye procedure giving improved sensitivity and reliability,” Journal of Immunological Methods, vol. 89, no. 2, pp. 271–277, 1986.
[18]  M. C. Madureira, A. P. Martins, M. Gomes, J. Paiva, A. P. Cunha, and V. Rosário, “Antimalarial activity of medicinal plants used in traditional medicine in S. Tomé and Príncipe islands,” Journal of Ethnopharmacology, vol. 81, pp. 23–29, 2002.
[19]  I. Oliveira, A. Sousa, J. S. Morais et al., “Chemical composition, and antioxidant and antimicrobial activities of three hazelnut (Corylus avellana L.) cultivars,” Food and Chemical Toxicology, vol. 46, no. 5, pp. 1801–1807, 2008.
[20]  S. Nwaka and A. Hudson, “Innovative lead discovery strategies for tropical diseases,” Nature Reviews Drug Discovery, vol. 5, no. 11, pp. 941–955, 2006.
[21]  J. R. Ioset, R. Brun, T. Wenzler, M. Kaiser, and V. Yardley, “Drug screening for kinetoplastids diseases: a training manual for screening in neglected diseases,” DNDi and Pan-Asian Screening Network, pp. 1–74, 2009.
[22]  D. Sereno, A. Cordeiro da Silva, F. Mathieu-Daude, and A. Ouaissi, “Advances and perspectives in Leishmania cell based drug-screening procedures,” Parasitology International, vol. 56, no. 1, pp. 3–7, 2007.
[23]  P. Chirac and E. Torreele, “Global framework on essential health R&D,” The Lancet, vol. 367, no. 9522, pp. 1560–1561, 2006.
[24]  R. Pink, A. Hudson, M. A. Mouriès, and M. Bendig, “Opportunities and challenges in antiparasitic drug discovery,” Nature Reviews Drug Discovery, vol. 4, no. 9, pp. 727–740, 2005.
[25]  M. Moran, J. Guzman, A. L. Ropars et al., “Neglected disease research and development: how much are we really spending?” PLoS Medicine, vol. 6, no. 2, Article ID e1000030, 2009.
[26]  J. L. Siqueira-Neto, O. R. Song, H. Oh et al., “Antileishmanial high-throughput drug screening reveals drug candidates with new scaffolds,” PLOS Neglected Tropical Diseases, vol. 4, no. 5, article e675, 2010.
[27]  G. de Muylder, K. K. H. Ang, S. Chen, M. R. Arkin, J. C. Engel, and J. H. McKerrow, “A screen against Leishmania intracellular amastigotes: comparison to a promastigote screen and identification of a host cell-specific hit,” PLoS Neglected Tropical Diseases, vol. 5, no. 7, Article ID e1253, 2011.
[28]  F. G. de Miranda, J. C. Vilar, I. A. Alves, S. C. Cavalcanti, and A. R. Antoniolli, “Antinociceptive and antiedematogenic properties and acute toxicity of Tabebuia avellanedae Lor. ex Griseb. inner bark aqueous extract,” BMC Pharmacology, vol. 1, no. 1, article 6, 2001.
[29]  V. F. Andrade-Neto, M. G. L. Brand?o, F. Q. Oliveira et al., “Antimalarial activity of Bidens pilosa L. (Asteraceae) ethanol extracts from wild plants collected in various localities or plants cultivated in humus soil,” Phytotherapy Research, vol. 18, no. 8, pp. 634–639, 2004.
[30]  A. V. Pinto and S. L. de Castro, “The trypanocidal activity of naphthoquinones: a review,” Molecules, vol. 14, no. 11, pp. 4570–4590, 2009.
[31]  J. M. Matés and F. M. Sánchez-Jiménez, “Role of reactive oxygen species in apoptosis: implications for cancer therapy,” The International Journal of Biochemistry & Cell Biology, vol. 32, no. 2, pp. 157–170, 2000.
[32]  G. L. Parrilha, R. P. Vieira, P. P. Campos et al., “Coordination of lapachol to bismuth(III) improves its anti-inflammatory and anti-angiogenic activities,” BioMetals, vol. 25, no. 1, pp. 55–62, 2012.
[33]  J. Tonholo, L. R. Freitas, F. C. de Abreu et al., “Electrochemical properties of biologically active heterocyclic naphthoquinones,” Journal of the Brazilian Chemical Society, vol. 9, no. 2, pp. 163–169, 1998.
[34]  J. Benites, J. A. Valderrama, F. Rivera et al., “Studies on quinones—part 42: synthesis of furylquinone and hydroquinones with antiproliferative activity against human tumor cell lines,” Bioorganic and Medicinal Chemistry, vol. 16, no. 2, pp. 862–868, 2008.
[35]  E. A. Hillard, F. C. de Abreu, D. C. M. Ferreira, G. Jaouen, M. O. F. Goulart, and C. Amatore, “Electrochemical parameters and techniques in drug development, with an emphasis on quinones and related compounds,” Chemical Communications, no. 23, pp. 2612–2628, 2008.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133