Magnesium alloys as biodegradable metal implants in orthopaedic research received a lot of interest in recent years. They have attractive biological properties including being essential to human metabolism, biocompatibility, and biodegradability. However, magnesium can corrode too rapidly in the high-chloride environment of the physiological system, loosing mechanical integrity before the tissue has sufficiently healed. Hydroxyapatite (HAp) coating was proposed to decrease the corrosion rate and improve the bioactivity of magnesium alloy. Apatite has been cathodically deposited on the surface of Mg alloy from solution that composed of 3?mM Ca(H2PO4)2 and 7?mM CaCl2 at various applied potentials. The growing of HAp was confirmed on the surface of the coatings after immersion in SBF solution for 7 days. The coating obtained at ?1.4?V showed higher corrosion resistance with bioactive behaviors. 1. Introduction Metal materials, including stainless steels, titanium, and cobalt-chromium-based alloys, are commonly used for implant devices due to their high strength, ductility, and good anticorrosion properties [1]. It is more suitable for load-bearing applications compared with ceramics or polymeric materials due to their combination of high mechanical strength and fracture toughness [2]. The release of toxic metallic ions or particles by corrosion or wear processes leads to undesirable effects on cell and bone tissues [3]. Moreover, these metallic materials are not biodegradable in the human body and can cause long-term complication (infection) [4]. The elastic modules of current metallic biomaterials are not well matched with that of natural bone tissue, resulting in stress shielding effects that can lead to reduced stimulation of new bone growth and remodeling which decreases implant stability [5]. Comparing to commonly approved metallic biomaterials, magnesium alloys have many outstanding advantages due to their attractive biological property including being essential to human metabolism, biocompatibility, and biodegradability [6]. The mechanical properties of magnesium alloys are similar to those of natural bone (40–57?GPa) [7]. Moreover, magnesium is one of the most important bivalent ions associated with the formation of biological appetites and plays an important role in the changes in the bone matrix that determines bone fragility [8]. On the other hand, implants made of magnesium alloys were degraded in vivo, eliminating the need for a second operation for implant removal. Good biocompatibility was observed in clinical studies [9]. Unfortunately,
References
[1]
S. Ono, A. Kodama, and H. Asoh, “Electrodeposition behavior of hydroxyapatite on porous electrode composed of sintered titanium spheres,” Journal of Japan Institute of Light Metals, vol. 58, no. 11, pp. 593–598, 2008.
[2]
M. Sumita, T. Hanawa, and S. H. Teoh, “Development of nitrogen-containing nickel-free austenitic stainless steels for metallic biomaterials—review,” Materials Science and Engineering C, vol. 24, no. 6–8, pp. 753–760, 2004.
[3]
B. D. Hahn, D. S. Park, J. J. Choi et al., “Aerosol deposition of hydroxyapatite-chitosan composite coatings on biodegradable magnesium alloy,” Surface and Coatings Technology, vol. 205, no. 8-9, pp. 3112–3118, 2011.
[4]
C. Lhotka, T. Szekeres, I. Steffan, K. Zhuber, and K. Zweymüller, “Four-year study of cobalt and chromium blood levels in patients managed with two different metal-on-metal total hip replacements,” Journal of Orthopaedic Research, vol. 21, no. 2, pp. 189–195, 2003.
[5]
J. Nagels, M. Stokdijk, and P. M. Rozing, “Stress shielding and bone resorption in shoulder arthroplasty,” Journal of Shoulder and Elbow Surgery, vol. 12, no. 1, pp. 35–39, 2003.
[6]
P. Staiger, A. Pietak, J. Huadmai, and G. Dias, “Magnesium and its alloys as orthopedic biomaterials: a review,” Biomaterials, vol. 27, no. 9, pp. 1728–1734, 2006.
[7]
J. Vormann, “Magnesium: nutrition and metabolism,” Molecular Aspects of Medicine, vol. 24, no. 1–3, pp. 27–37, 2003.
[8]
C. R. Howlett, H. Zreiqat, R. O'Dell et al., “The effect of magnesium ion implantation into alumina upon the adhesion of human bone derived cells,” Journal of Materials Science, vol. 5, no. 9-10, pp. 715–722, 1994.
[9]
F. Witte, V. Kaese, H. Haferkamp et al., “In vivo corrosion of four magnesium alloys and the associated bone response,” Biomaterials, vol. 26, no. 17, pp. 3557–3563, 2005.
[10]
C. E. Wen, M. Mabuchi, Y. Yamada, K. Shimojima, Y. Chino, and T. Asahina, “Processing of biocompatible porous Ti and Mg,” Scripta Materialia, vol. 45, no. 10, pp. 1147–1153, 2001.
[11]
K. Y. Chiu, M. H. Wong, F. T. Cheng, and H. C. Man, “Characterization and corrosion studies of fluoride conversion coating on degradable Mg implants,” Surface and Coatings Technology, vol. 202, no. 3, pp. 590–598, 2007.
[12]
X. N. Gu, W. Zheng, Y. Cheng, and Y. F. Zheng, “A study on alkaline heat treated Mg-Ca alloy for the control of the biocorrosion rate,” Acta Biomaterialia, vol. 5, no. 7, pp. 2790–2799, 2009.
[13]
C. Liu, Y. Xin, X. Tian, and P. K. Chu, “Corrosion behavior of AZ91 magnesium alloy treated by plasma immersion ion implantation and deposition in artificial physiological fluids,” Thin Solid Films, vol. 516, no. 2–4, pp. 422–427, 2007.
[14]
L. L. Hench and J. M. Polak, “Third-generation biomedical materials,” Science, vol. 295, no. 5557, pp. 1014–1017, 2002.
[15]
L. Yan, Y. Leng, and L. T. Weng, “Characterization of chemical inhomogeneity in plasma-sprayed hydroxyapatite coatings,” Biomaterials, vol. 24, no. 15, pp. 2585–2592, 2003.
[16]
M. Hamdi and A. Ide-Ektessabi, “Preparation of hydroxyapatite layer by ion beam assisted simultaneous vapor deposition,” Surface and Coatings Technology, vol. 163-164, pp. 362–367, 2003.
[17]
S. J. Ding, “Properties and immersion behavior of magnetron-sputtered multi-layered hydroxyapatite/titanium composite coatings,” Biomaterials, vol. 24, no. 23, pp. 4233–4238, 2003.
[18]
W. Weng, S. Zhang, K. Cheng et al., “Sol-gel preparation of bioactive apatite films,” Surface and Coatings Technology, vol. 167, no. 2-3, pp. 292–296, 2003.
[19]
W. H. Song, Y. K. Jun, Y. Han, and S. H. Hong, “Biomimetic apatite coatings on micro-arc oxidized titania,” Biomaterials, vol. 25, no. 17, pp. 3341–3349, 2004.
[20]
X. Meng, T. Y. Kwon, and K. H. Kim, “Hydroxyapatite coating by electrophoretic deposition at dynamic voltage,” Dental Materials Journal, vol. 27, no. 5, pp. 666–671, 2008.
[21]
R. Chiesa, E. Sandrini, M. Santin, G. Rondelli, and A. Cigada, “Osteointegration of titanium and its alloys by anodic spark deposition and other electrochemical techniques: a review,” The Journal of Applied Biomaterials & Biomechanics, vol. 1, no. 2, pp. 91–107, 2003.
[22]
W. Siefert, “Corona spray pyrolysis: a new coating technique with an extremely enhanced deposition efficiency,” Thin Solid Films, vol. 120, no. 4, pp. 267–274, 1984.
[23]
M. Iafisco, R. Bosco, S. C. G. Leeuwenburgh, et al., “Electrostatic spray deposition of biomimetic nanocrystalline apatite coatings onto titanium,” Advanced Engineering Materials, vol. 14, pp. B13–B20, 2012.
[24]
M. C. Kuo and S. K. Yen, “The process of electrochemical deposited hydroxyapatite coatings on biomedical titanium at room temperature,” Materials Science and Engineering C, vol. 20, no. 1-2, pp. 153–160, 2002.
[25]
H. Qu and M. Wei, “The effect of temperature and initial pH on biomimetic apatite coating,” Journal of Biomedical Materials, vol. 87, no. 1, pp. 204–212, 2008.
[26]
S. A. Salman, Corrosion protection of magnesium alloys with anodizing and conversion coating [Ph.D. thesis], Nagoya University, 2010.
[27]
T. Kokubo and H. Takadama, “How useful is SBF in predicting in vivo bone bioactivity?” Biomaterials, vol. 27, no. 15, pp. 2907–2915, 2006.