全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

The CYP2C19*1/*2 Genotype Does Not Adequately Predict Clopidogrel Response in Healthy Malaysian Volunteers

DOI: 10.1155/2013/128795

Full-Text   Cite this paper   Add to My Lib

Abstract:

Background. The CYP2C19*2 allele may be associated with a reduced antiplatelet effect for clopidogrel. Here, we assessed whether CYP2C19*2 alleles correlate with clopidogrel responsiveness following the administration of clopidogrel in healthy Malaysian volunteers. Methods. Ninety volunteers were genotyped for CYP2C19*2 and CYP2C19*3 alleles. Forty-five of 90 volunteers were included in the clopidogrel response studies and triaged into three genotypes, namely, CYP2C19*1/*1 , CYP2C19*1/*2 and CYP2C19*2/*2 . All subjects received 300?mg of clopidogrel, and platelet reactivity was assessed after a four-hour loading utilizing the VerifyNow-P2Y12 assay. Platelet activity was reported using P2Y12 reaction units (PRUs), and nonresponder status was prespecified at PRU?≥?230. Results. Following clopidogrel intake, CYP2C19*2/*2 carriers had a significantly higher mean PRU compared to the CYP2C19*1/*2 and CYP2C19*1/*1 (291.0 ± 62.1 versus 232.5 ± 81.4 versus 147.4 ± 87.2 PRU, ) carriers. Almost half of the participants (46.7%) were found to be nonresponders (3 were CYP2C19*1/*1, 11 were CYP2C19*1/*2, and 7 were CYP2C19*2/*2). Conclusion. In healthy Malaysian volunteers, CYP2C19*2 allele was associated with a decrease in platelet responsiveness to clopidogrel. However, clopidogrel nonresponders can be found not only in the carriers of CYP2C19*2/*2, but also in the carriers of CYP2C19*1/*2 and CYP2C19*1/*1. The present paper demonstrated that genotype information does not correlate with clopidogrel response, and genotyping may represent a less robust approach compared to platelet activity testing in guiding clopidogrel therapy. 1. Introduction Adequate platelet inhibition plays a key role in the prevention of recurrent ischemic events in patients with acute coronary syndromes (ACSs) undergoing percutaneous coronary intervention (PCI). Accordingly, the use of clopidogrel as a part of the dual-antiplatelet strategy represents a standard of care in clinical practice [1–3]. Recently, the presence of defective alleles of the CYP2C19 enzyme, which is required for the conversion of clopidogrel to its active metabolite, has been associated with lower levels of the active metabolite corresponding in turn to diminished antiplatelet effect and potentially higher rates of adverse cardiovascular events [4, 5]. Consistently, the U. S. Food and Drug Administration (U.S. FDA) has added a black-box warning to the clopidogrel label emphasizing the increased risk of cardiovascular outcomes in patients carrying two loss of function (LoF) CYP2C19 alleles, particularly carriers of

References

[1]  S. Yusuf, F. Zhao, S. R. Mehta, S. Chrolavicius, G. Tognoni, and K. K. Fox, “Effects of clopidogrel in addition to aspirin in patients with acute coronary syndromes without ST-segment elevation,” The New England Journal of Medicine, vol. 345, no. 7, pp. 494–502, 2001.
[2]  S. R. Mehta, J. F. Tanguay, J. W. Eikelboom et al., “Double-dose versus standard-dose clopidogrel and high-dose versus low-dose aspirin in individuals undergoing percutaneous coronary intervention for acute coronary syndromes (CURRENT-OASIS 7): a randomised factorial trial,” The Lancet, vol. 376, no. 9748, pp. 1233–1243, 2010.
[3]  S. R. Steinhubl, P. B. Berger, J. Tift Mann III et al., “Early and sustained dual oral antiplatelet therapy following percutaneous coronary intervention: a randomized controlled trial,” Journal of the American Medical Association, vol. 288, no. 19, pp. 2411–2420, 2002.
[4]  J. T. Brandt, S. L. Close, S. J. Iturria et al., “Common polymorphisms of CYP2C19 and CYP2C9 affect the pharmacokinetic and pharmacodynamic response to clopidogrel but not prasugrel,” Journal of Thrombosis and Haemostasis, vol. 5, no. 12, pp. 2429–2436, 2007.
[5]  J. L. Mega, S. L. Close, S. D. Wiviott et al., “Cytochrome P-450 polymorphisms and response to clopidogrel,” The New England Journal of Medicine, vol. 360, no. 4, pp. 354–362, 2009.
[6]  PLAVIX prescribing information, “Sanofi-Aventis website,” April 12, 2012, http://products.sanofi.us/PLAVIX/PLAVIX.html.
[7]  R. S. Wright, J. L. Anderson, C. D. Adams et al., “2011 ACCF/AHA focused update of the guidelines for the management of patients with unstable angina/non-ST-elevation myocardial infarction (updating the 2007 guideline). A report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines,” Journal of the American College of Cardiology, vol. 60, no. 7, pp. 645–681, 2012.
[8]  “ESC Guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation: the task force for the management of acute coronary syndromes (ACS) in patients presenting without persistent ST-segment elevation of the European Society of Cardiology (ESC),” European Heart Journal, vol. 32, no. 23, pp. 2999–3054, 2011.
[9]  T. A. Hall, “Bioedit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT,” Nucleic Acids Symposium Series, vol. 41, pp. 95–98, 1999.
[10]  S. S. Brar, J. ten Berg, R. Marcucci, et al., “Impact of platelet reactivity on clinical outcomes after percutaneous coronary intervention. A collaborative meta-analysis of individual participant data,” Journal of the American College of Cardiology, vol. 58, no. 19, pp. 1945–1954, 2011.
[11]  A. R. Shuldiner, J. R. O'Connell, K. P. Bliden et al., “Association of cytochrome P450 2C19 genotype with the antiplatelet effect and clinical efficacy of clopidogrel therapy,” The Journal of the American Medical Association, vol. 302, no. 8, pp. 849–857, 2009.
[12]  J. L. Mega, T. Simon, J. P. Collet et al., “Reduced-function CYP2C19 genotype and risk of adverse clinical outcomes among patients treated with clopidogrel predominantly for PCI: a meta-analysis,” The Journal of the American Medical Association, vol. 304, no. 16, pp. 1821–1830, 2010.
[13]  S. D. Wiviott, E. Braunwald, C. H. McCabe et al., “Prasugrel versus clopidogrel in patients with acute coronary syndromes,” The New England Journal of Medicine, vol. 357, no. 20, pp. 2001–2015, 2007.
[14]  L. Wallentin, R. C. Becker, A. Budaj et al., “Ticagrelor versus clopidogrel in patients with acute coronary syndromes,” The New England Journal of Medicine, vol. 361, no. 11, pp. 1045–1057, 2009.
[15]  M. J. Price, P. B. Berger, P. S. Teirstein et al., “Standard- vs high-dose clopidogrel based on platelet function testing after percutaneous coronary intervention: the GRAVITAS randomized trial,” The Journal of the American Medical Association, vol. 305, no. 11, pp. 1097–1105, 2011.
[16]  D. Trenk, G. W. Stone, M. Gawaz, et al., “A randomized trial of prasugrel versus clopidogrel in patients with high platelet reactivity on clopidogrel after elective percutaneous coronary intervention with implantation of drug-eluting stents: results of the TRIGGER-PCI (testing platelet reactivity in patients undergoing elective stent placement on clopidogrel to guide alternative therapy with prasugrel) study,” Journal of the American College of Cardiology, vol. 59, no. 24, pp. 2159–2164, 2012.
[17]  J. D. Roberts, G. A. Wells, M. R. Le May, et al., “Point-of-care genetic testing for personalisation of antiplatelet treatment (RAPID GENE): a prospective, randomised, proof-of-concept trial,” The Lancet, vol. 379, no. 9827, pp. 1705–1711, 2012.
[18]  Y. S. Yang, L. P. Wong, T. C. Lee, A. M. Mustafa, Z. Mohamed, and C. C. Lang, “Genetic polymorphism of cytochrome P450 2C19 in healthy Malaysian subjects,” British Journal of Clinical Pharmacology, vol. 58, no. 3, pp. 332–335, 2004.
[19]  K. Umemura, T. Furuta, and K. Kondo, “The common gene variants of CYP2C19 affect pharmacokinetics and pharmacodynamics in an active metabolite of clopidogrel in healthy subjects,” Journal of Thrombosis and Haemostasis, vol. 6, no. 8, pp. 1439–1441, 2008.
[20]  J. S. Hulot, A. Bura, E. Villard et al., “Cytochrome P450 2C19 loss-of-function polymorphism is a major determinant of clopidogrel responsiveness in healthy subjects,” Blood, vol. 108, no. 7, pp. 2244–2247, 2006.
[21]  J. T. Brandt, S. L. Close, S. J. Iturria et al., “Common polymorphisms of CYP2C19 and CYP2C9 affect the pharmacokinetic and pharmacodynamic response to clopidogrel but not prasugrel,” Journal of Thrombosis and Haemostasis, vol. 5, no. 12, pp. 2429–2436, 2007.
[22]  J. P. Collet, J. S. Hulot, A. Pena et al., “Cytochrome P450 2C19 polymorphism in young patients treated with clopidogrel after myocardial infarction: a cohort study,” The Lancet, vol. 373, no. 9660, pp. 309–317, 2009.
[23]  J. L. Mega, W. Hochholzer, A. L. Frelinger III, et al., “Dosing clopidogrel based on CYP2C19 genotype and the effect on platelet reactivity in patients with stable cardiovascular disease,” The Journal of the American Medical Association, vol. 306, no. 20, pp. 2221–2228, 2011.
[24]  J. P. Collet, J. S. Hulot, G. Anzaha et al., “High doses of clopidogrel to overcome genetic resistance: the randomized crossover clovis-2 (clopidogrel and response variability investigation study 2),” Journal of the American College of Cardiology Cardiovascular Intervention, vol. 4, no. 4, pp. 392–402, 2011.
[25]  P. A. Gurbel, A. R. Shuldiner, K. P. Bliden, K. Ryan, R. E. Pakyz, and U. S. Tantry, “The relation between CYP2C19 genotype and phenotype in stented patients on maintenance dual antiplatelet therapy,” American Heart Journal, vol. 161, no. 3, pp. 598–604, 2011.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133