全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Stability Study of Darunavir Ethanolate Tablets Applying a New Stability-Indicating HPLC Method

DOI: 10.1155/2013/834173

Full-Text   Cite this paper   Add to My Lib

Abstract:

Chemical and physical degradation of drugs may result in altered therapeutic efficacy and even toxic effects. Therefore, the aim of this work was to study the stability of darunavir and to develop and validate a liquid chromatography (LC) method to determine darunavir in raw material and tablets in the presence of degradation products. The novel method showed to be linear from 6.0 to 21.0?μg/mL, with high precision (CV < 2%) and accuracy (recuperation of 99.64%). It is simple and reliable, free of placebo interferences. The robustness of the method was evaluated by a factorial design using seven different parameters. Forced degradation study was done under alkaline, acidic, and oxidative stress at ambient temperature and by heating. The LC method was able to quantify and separate darunavir and its degradation products. Darunavir showed to be unstable under alkaline, acid, and oxidative conditions. The novelty of this study is understanding the factors that affect darunavir ethanolate stability in tablets, which is the first step to unravel the path to know the degradation products. The novel stability-indicating method can be used to monitor the drug and the main degradation products in low concentrations in which there is linearity. 1. Introduction According to the World Health Organization (WHO) AIDS epidemic updates, in 2009 new HIV infections were reduced by 17% over the previous eight years. Data from WHO also show that there are more people living with HIV than ever before as people are living longer due to the beneficial effects of antiretroviral therapy along with population growth [1]. WHO estimates that since the availability of effective treatment in 1996, some 2.9 million lives have been saved [1]. In accordance with Sharma and Garg, the current clinical therapeutic practice of using Highly Active Antiretroviral Therapy (HAART), is considered as one of the most significant advances in the field of HIV therapy [2]. As an important component of the HAART, darunavir (Figure 1), a synthetic nonpeptidic protease inhibitor developed by the pharmaceutical company Tibotec in 1998 [3], has demonstrated high efficacy against HIV [4, 5]. This compound was licensed in June 2006 in the United States and in February 2007 in the European Union [1]. The daily dose of darunavir (600?mg twice a day) has to be administered along with low dose (100?mg) of ritonavir as a booster and food [6] which contributes to better solubilization of the drug in the lumen [6]. Figure 1: Chemical structure of darunavir. Darunavir is marketed in ethanolate form under the brand

References

[1]  World Health Organization, AIDS Epidemic Update, November 2012, http://www.who.int/mediacentre/news/releases/2009/hiv_aids_20091124/en/index.html.
[2]  P. Sharma and S. Garg, “Pure drug and polymer based nanotechnologies for the improved solubility, stability, bioavailability and targeting of anti-HIV drugs,” Advanced Drug Delivery Reviews, vol. 62, no. 4-5, pp. 491–502, 2010.
[3]  A. K. Ghosh, J. F. Kincaid, W. Cho et al., “Potent HIV protease inhibitors incorporating high-affinity P2-ligands and (R)-(hydroxyethylamino)sulfonamide isostere,” Bioorganic and Medicinal Chemistry Letters, vol. 8, no. 6, pp. 687–690, 1998.
[4]  D. Back, V. Sekar, and R. M. W. Hoetelmans, “Darunavir: pharmacokinetics and drug interactions,” Antiviral Therapy, vol. 13, no. 1, pp. 1–13, 2008.
[5]  J. C. R. Corrêa, D. M. D’Arcy, C. H. R. Serra, and H. R. N. Salgado, “Darunavir: a critical review of its properties, use and drug interactions,” Pharmacology, vol. 90, no. 1-2, pp. 102–109, 2012.
[6]  Food and Drug Administration, “New labeling approved for Prezista (darunavir),” November 2012, http://www.fda.gov/ForConsumers/ByAudience/ForPatientAdvocates/HIVandAIDSActivities/ucm236771.htm.
[7]  J. C. R. Corrêa, C. Reichman, C. D. Vianna-Soares, and H. R. N. Salgado, “Stability study of fluconazole applying validated bioassay and stability-indicating LC methods,” Journal of Analytical & Bioanalytical Techniques, vol. 2, p. 126, 2011.
[8]  P. Kovaríkova, M. Mokry, and J. Klimes, “Photochemical stability of nimesulide,” Journal of Pharmaceutical and Biomedical Analysis, vol. 31, no. 4, pp. 827–832, 2003.
[9]  A. Curran, M. Gutirerrez, E. Deig et al., “Efficacy, safety and pharmacokinetics of 900/100?mg of darunavir/ritonavir once daily in treatment-experienced patients,” Journal of Antimicrobial Chemotherapy, vol. 65, no. 10, pp. 2195–2203, 2010.
[10]  A. D'Avolio, M. Simiele, M. Siccardi et al., “A HPLC-MS method for the simultaneous quantification of fourteen antiretroviral agents in peripheral blood mononuclear cell of HIV infected patients optimized using medium corpuscular volume evaluation,” Journal of Pharmaceutical and Biomedical Analysis, vol. 54, no. 4, pp. 779–788, 2011.
[11]  A. D'Avolio, M. Simiele, M. Siccardi et al., “HPLC-MS method for the quantification of nine anti-HIV drugs from dry plasma spot on glass filter and their long term stability in different conditions,” Journal of Pharmaceutical and Biomedical Analysis, vol. 52, no. 5, pp. 774–780, 2010.
[12]  L. Else, V. Watson, J. Tjia et al., “Validation of a rapid and sensitive high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) assay for the simultaneous determination of existing and new antiretroviral compounds,” Journal of Chromatography B, vol. 878, no. 19, pp. 1455–1465, 2010.
[13]  S. P. García, D. G. Tunica, and M. B. Serra, “Desarrollo y validación de un método para la determinación de darunavir en plasma mediante LC-MS/MS,” Revista del Laboratorio Clínico, vol. 4, pp. 127–133, 2011.
[14]  L. Goldwirt, S. Chhun, E. Rey et al., “Quantification of darunavir (TMC114) in human plasma by high-performance liquid chromatography with ultra-violet detection,” Journal of Chromatography B, vol. 857, no. 2, pp. 327–331, 2007.
[15]  L. Satyanarayana, S. V. Naidu, N. M. Rao, A. Kumar, and K. Suresh, “The estimation of darunavir in tablet dosage form by RP-HPLC,” Asian Journal of Research in Pharmaceutical Sciences, vol. 1, pp. 74–76, 2011.
[16]  B. V. R. Reddy, G. Jyothi, B. S. Reddy, N. V. V. S. Raman, K. S. C. Reddy, and C. Rambabu, “Stability-Indicating HPLC method for the determination of darunavir ethanolate,” Journal of Chromatographic Science, vol. 51, no. 5, pp. 471–476, 2013.
[17]  K. Berginc, T. Trdan, J. Trontelj, and A. Kristl, “HIV protease inhibitors: garlic supplements and first-pass intestinal metabolism impact on the therapeutic efficacy,” Biopharmaceutics and Drug Disposition, vol. 31, no. 8-9, pp. 495–505, 2010.
[18]  ICH, Validation of Analytical Procedures: Text and Methodology, Harmonized Tripartite Guideline Q1A (R2), 2003.
[19]  ICH, Validation of Analytical Procedures: Text and Methodology, Harmonized Tripartite Guideline Q2 (R1), 2005.
[20]  W. J. Youden and E. H. Steiner, Statistical Manual of AOAC, Association of Official Analytical Chemistry. AOAC, Washington, DC, USA, 1975.
[21]  A. R. Larson and E. J. Weber, “Hydrolyses,” in Reaction Mechanisms in Environmental Organic Chemistry, A. R. Larson and E. J. Weber, Eds., pp. 103–167, CRC Press, Boca Raton, Fla, USA, 1994.
[22]  L. W. Dittert and T. Higuchi, “Rates of hydrolysis of carbamate and carbonate esters in alkaline solution,” Journal of Pharmaceutical Sciences, vol. 52, pp. 852–857, 1963.
[23]  I. D. C. César and G. A. Pianetti, “Robustness evaluation of the chromatographic method for the quantitation of lumefantrine using Youden's test,” Brazilian Journal of Pharmaceutical Sciences, vol. 45, no. 2, pp. 235–240, 2009.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133