Obscure gastrointestinal bleeding (OGIB) is one of the common complications in patients with chronic kidney disease (CKD), especially those who are on maintenance hemodialysis (HD). However, little is known about the characteristics of the small-bowel lesions in these patients, or of the factors that could predict the presence of such lesions. Therefore we enrolled a total of 42 CKD patients (including 19 HD patients and 23 non-HD patients), and compared the incidence of the small-bowel lesions among two groups. Furthermore, to identify predictive factors for the presence of small-bowel lesions, we performed multivariate logistic-regression-analyses. The incidence of small-bowel vascular lesions was significantly higher in CKD patients than in age-and-sex matched non-CKD patients ( ). On the other hand, there was any significant difference of the incidence of small-bowel lesions between HD and non-HD patients. In CKD patients, past history of blood transfusion (OR 5.66; 95% CI 1.10–29.1, ) was identified as an independent predictor of the presence of vascular lesions, and history of low-dose aspirin use (OR 6.00; 95% CI 1.13–31.9, ) was identified as that of erosive/ulcerated lesions. This indicated that proactive CE examination would be clinically meaningful for these patients. 1. Introduction The incidence of chronic kidney disease (CKD) and the number of patients requiring maintenance hemodialysis (HD) have continued to increase in developed countries [1]. Anemia is a common feature in CKD patients [2]. It is usually normocytic and normochromic because of the decreased erythropoiesis and red blood cell survival. However, these patients can also have concomitant iron deficiency anemia (IDA) caused by gastrointestinal bleeding. Gastrointestinal bleeding is more common in CKD patients than in the general population and is also associated with a higher mortality in these patients [3]. A higher incidence of bleeding from gastroduodenal ulcers has been reported in patients with end-stage renal disease [4]. In addition, the incidence of vascular lesions such as angioectasia has also been reported to be increased in these patients [5, 6]. These findings lend support to the hypothesis that CKD patients are at a higher risk of gastrointestinal bleeding, which in turn can result in IDA. However, upper and lower gastrointestinal endoscopies often do not reveal any obvious hemorrhagic lesions in these patients. Obscure gastrointestinal bleeding (OGIB) is defined as persistent or recurrent bleeding associated with negative findings on upper and lower
References
[1]
US Renal Data System USRDS, 2011 Annual Data Report: Atlas of Chronic Kidney Disease and End-Stage Renal Disease in the United States, National Institute of Health, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Md, USA, 2011.
[2]
C. Hsu, C. E. McCulloch, and G. C. Curhan, “Epidemiology of anemia associated with chronic renal insufficiency among adults in the United States: results from the Third National Health and Nutrition Examination Survey,” Journal of the American Society of Nephrology, vol. 13, no. 2, pp. 504–510, 2002.
[3]
J. Cheung, A. Yu, J. LaBossiere, Q. Zhu, and R. N. Fedorak, “Peptic ulcer bleeding outcomes adversely affected by end-stage renal disease,” Gastrointestinal Endoscopy, vol. 71, no. 1, pp. 44–49, 2010.
[4]
J. C. Luo, H. B. Leu, K. W. Huang et al., “Incidence of bleeding from gastroduodenal ulcers in patients with end-stage renal disease receiving hemodialysis,” Canadian Medical Association Journal, vol. 183, no. 18, pp. E1345–E1351, 2011.
[5]
Y. Sekino, H. Endo, E. Yamada et al., “Clinical associations and risk factors for bleeding from colonic angiectasia: a case-controlled study,” Colorectal Disease, vol. 14, no. 10, pp. e740–e746, 2012.
[6]
P. G. Foutch, “Angiodysplasia of the gastrointestinal tract,” American Journal of Gastroenterology, vol. 88, no. 6, pp. 807–818, 1993.
[7]
G. S. Raju, L. Gerson, A. Das, and B. Lewis, “American gastroenterological association (AGA) institute technical review on obscure gastrointestinal bleeding,” Gastroenterology, vol. 133, no. 5, pp. 1697–1717, 2007.
[8]
J. A. Leighton, J. Goldstein, W. Hirota et al., “Obscure gastrointestinal bleeding,” Gastrointestinal Endoscopy, vol. 58, no. 5, pp. 650–655, 2003.
[9]
M. Pennazio, R. Santucci, E. Rondonotti et al., “Outcome of patients with obscure gastrointestinal bleeding after capsule endoscopy: report of 100 consecutive cases,” Gastroenterology, vol. 126, no. 3, pp. 643–653, 2004.
[10]
G. Iddan, G. Meron, A. Glukhovsky, and P. Swain, “Wireless capsule endoscopy,” Nature, vol. 405, no. 6785, pp. 417–418, 2000.
[11]
G. D. Meron, “The development of the swallowable video capsule (M2A),” Gastrointestinal Endoscopy, vol. 52, no. 6, pp. 817–819, 2000.
[12]
B. S. Lewis and P. Swain, “Capsule endoscopy in the evaluation of patients with suspected small intestinal bleeding: results of a pilot study,” Gastrointestinal Endoscopy, vol. 56, no. 3, pp. 349–353, 2002.
[13]
J.-C. Saurin, M. Delvaux, J.-L. Gaudin et al., “Diagnostic value of endoscopic capsule in patients with obscure digestive bleeding: blinded comparison with video push-enteroscopy,” Endoscopy, vol. 35, no. 7, pp. 576–584, 2003.
[14]
M. Mylonaki, A. Fritscher-Ravens, and P. Swain, “Wireless capsule endoscopy: a comparison with push enteroscopy in patients with gastroscopy and colonoscopy negative gastrointestinal bleeding,” Gut, vol. 52, no. 8, pp. 1122–1126, 2003.
[15]
G. Costamagna, S. K. Shah, M. E. Riccioni et al., “A prospective trial comparing small bowel radiographs and video capsule endoscopy for suspected small bowel disease,” Gastroenterology, vol. 123, no. 4, pp. 999–1005, 2002.
[16]
E. Saperas, J. Dot, S. Videla et al., “Capsule endoscopy versus computed tomographic or standard angiography for the diagnosis of obscure gastrointestinal bleeding,” American Journal of Gastroenterology, vol. 102, no. 4, pp. 731–737, 2007.
[17]
S. Karagiannis, S. Goulas, G. Kosmadakis et al., “Wireless capsule endoscopy in the investigation of patients with chronic renal failure and obscure gastrointestinal bleeding (preliminary data),” World Journal of Gastroenterology, vol. 12, no. 32, pp. 5182–5185, 2006.
[18]
T. Ohmori, H. Konishi, S. Nakamura, and K. Shiratori, “Abnormalities of the small intestine detected by capsule endoscopy in hemodialysis patients,” Internal Medicine, vol. 51, no. 12, pp. 1455–1460, 2012.
[19]
A. Rastogi, R. E. Schoen, and A. Slivka, “Diagnostic yield and clinical outcomes of capsule endoscopy,” Gastrointestinal Endoscopy, vol. 60, no. 6, pp. 959–964, 2004.
[20]
A. May, A. Wardak, L. Nachbar, S. Remke, and C. Ell, “Influence of patient selection on the outcome of capsule endoscopy in patients with chronic gastrointestinal bleeding,” Journal of Clinical Gastroenterology, vol. 39, no. 8, pp. 684–688, 2005.
[21]
P. Apostolopoulos, C. Liatsos, I. M. Gralnek et al., “The role of wireless capsule endoscopy in investigating unexplained iron deficiency anemia after negative endoscopic evaluation of the upper and lower gastrointestinal tract,” Endoscopy, vol. 38, no. 11, pp. 1127–1132, 2006.
[22]
M. Esaki, T. Matsumoto, S. Yada et al., “Factors associated with the clinical impact of capsule endoscopy in patients with overt obscure gastrointestinal bleeding,” Digestive Diseases and Sciences, vol. 55, no. 8, pp. 2294–2301, 2010.
[23]
L. Lepileur, X. Dray, M. Antonietti et al., “Factors associated with diagnosis of obscure gastrointestinal bleeding by video capsule enteroscopy,” Clinical Gastroenterology and Hepatology, vol. 10, no. 12, pp. 1376–1380, 2012.
[24]
S. Baum, C. A. Athanasoulis, and A. C. Waltman, “Angiodysplasia of the right colon: a cause of gastrointestinal bleeding,” American Journal of Roentgenology, vol. 129, no. 5, pp. 789–794, 1977.
[25]
G. Dodda and B. W. Trotman, “Gastrointestinal angiodysplasia,” Journal of the Association for Academic Minority Physicians, vol. 8, no. 1, pp. 16–19, 1997.
[26]
D. Kaw and D. Malhotra, “Platelet dysfunction and end-stage renal disease,” Seminars in Dialysis, vol. 19, no. 4, pp. 317–322, 2006.
[27]
E. V. Lawler, D. R. Gagnon, J. Fink et al., “Initiation of anaemia management in patients with chronic kidney disease not on dialysis in the Veterans Health Administration,” Nephrology Dialysis Transplantation, vol. 25, no. 7, pp. 2237–2244, 2010.
[28]
C. Baigent, C. Sudlow, R. Collins, and R. Peto, “Collaborative meta-analysis of randomised trials of antiplatelet therapy for prevention of death, myocardial infarction, and stroke in high risk patients,” British Medical Journal, vol. 324, no. 7329, pp. 71–86, 2002.
[29]
J. Hallas, M. Dall, A. Andries et al., “Use of single and combined antithrombotic therapy and risk of serious upper gastrointestinal bleeding: population based case-control study,” British Medical Journal, vol. 333, no. 7571, pp. 726–728, 2006.
[30]
A. Shiotani, T. Kamada, and K. Haruma, “Low-dose aspirin-induced gastrointestinal diseases: past, present, and future,” Journal of Gastroenterology, vol. 43, no. 8, pp. 581–588, 2008.
[31]
H. Endo, K. Hosono, M. Inamori et al., “Incidence of small bowel injury induced by low-dose aspirin: a crossover study using capsule endoscopy in healthy volunteers,” Digestion, vol. 79, no. 1, pp. 44–51, 2009.
[32]
H. Endo, K. Hosono, M. Inamori et al., “Characteristics of small bowel injury in symptomatic chronic low-dose aspirin users: the experience of two medical centers in capsule endoscopy,” Journal of Gastroenterology, vol. 44, no. 6, pp. 544–549, 2009.
[33]
J. J. Park, J. H. Cheon, H. M. Kim et al., “Negative capsule endoscopy without subsequent enteroscopy does not predict lower long-term rebleeding rates in patients with obscure GI bleeding,” Gastrointestinal Endoscopy, vol. 71, no. 6, pp. 990–997, 2010.