全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Diversity of Mercury Resistant Escherichia coli Strains Isolated from Aquatic Systems in Rio de Janeiro, Brazil

DOI: 10.1155/2013/265356

Full-Text   Cite this paper   Add to My Lib

Abstract:

Escherichia coli may harbor genetic mercury resistance markers which makes this bacterial species a promising alternative for bioremediation processes. The objective of this study was to investigate phenotypic and genetic characteristics related to diversity and mercury resistance among 178 Escherichia coli strains isolated from residential, industrial, agricultural, and hospital wastewaters and recreational waters at Rio de Janeiro city. Genetic and conventional methods were carried out in order to determine mercury resistance. Random amplification of polymorphic DNA (RAPD-PCR) and denaturing gradient gel electrophoresis (DGGE) were used to investigate genetic variability. RAPD data revealed a high degree of polymorphism among E. coli mercury resistant strains and showed reproducibility and good discriminative results. DGGE typing detected diversity within the merA gene fragment. Our findings represent an improvement in epidemiological studies of ??E. coli and support the evidence of nonclonal nature of mercury resistant E. coli strains circulating in rural and urban aquatic systems in Rio de Janeiro city. 1. Introduction Chemical contamination of aquatic systems consists of a relevant pollution pattern causing drastic impacts on human, animal, and ecosystem health [1]. Among the various chemical contaminants, mercury plays an important role and once released in aquatic systems, mercury can resist to natural degradation processes and persist for a long time in these environments without losing its toxicity [2]. The concern about environmental contamination by this metal is due to its high toxicity, especially to the nervous system, and its bioaccumulation and biomagnification, providing persistence and wide distribution in global aquatic environment. Even regions with no mercury discharging may be affected [2–7]. Mercury toxicity to humans and other organisms is related to the chemical form to which the organisms were exposed, the route and time of exposure, dose, nutritional status, individual susceptibility, and genetic predisposition [3, 4, 6, 8]. Symptoms and contamination sources are rather different in exposure to elemental mercury, inorganic or organic mercury compounds [3, 4]. Human contamination by this metal may occur by different pathways such as vapors inhalation, contaminated food and/or water consumption, and to a lesser extent through skin contact [3, 6]. Mercury exposure triggers a series of effects including neurological, renal, cardiovascular, respiratory, gastrintestinal, hepatic, genotoxic, immunological, dermal, reproductive, and

References

[1]  A. Bafana, “Mercury resistance in Sporosarcina sp. G3,” BioMetals, vol. 24, no. 2, pp. 301–309, 2011.
[2]  F. A. Azevedo, Toxicologia do Mercúrio, Editora Rima, S?o Paulo, Brazil, 2003.
[3]  United Nations Environmental Programme, “Global mercury assessment,” 2002, http://www.chem.unep.ch/mercury/report/gma-report-toc.htm.
[4]  A. L. Oliveira Da Silva, P. R. G. Barrocas, S. Do Couto Jacob, and J. C. Moreira, “Dietary intake and health effects of selected toxic elements,” Brazilian Journal of Plant Physiology, vol. 17, no. 1, pp. 79–93, 2005.
[5]  V. M. Camara, A. P. Silva, and J. A. Cancio, “Notas para 17 a constitui??o de um programa de vigilancia ambiental dos riscos e efeitos da exposic?o do mercúrio metálico em áreas de produ??o de ouro,” Informe Epidemiológico Do SUS, vol. 2, pp. 35–44, 1998.
[6]  A. T. Jan, I. Murtaza, A. Ali, and Q. M. R. Haq, “Mercury pollution: an emerging problem and potential bacterial remediation strategies,” World Journal of Microbiology and Biotechnology, vol. 25, no. 9, pp. 1529–1537, 2009.
[7]  F. M. M. Morel, A. M. L. Kraepiel, and M. Amyot, “The chemical cycle and bioaccumulation of mercury,” Annual Review of Ecology and Systematics, vol. 29, pp. 543–566, 1998.
[8]  P. B. Tchounwou, W. K. Ayensu, N. Ninashvili, and D. Sutton, “Environmental exposure to mercury and its toxicopathologic implications for public health,” Environmental Toxicology, vol. 18, no. 3, pp. 149–175, 2003.
[9]  M. M. Ball, P. Carrero, D. Castro, and L. A. Yarzábal, “Mercury resistance in bacterial strains isolated from tailing ponds in a gold mining area near El Callao (Bolívar State, Venezuela),” Current Microbiology, vol. 54, no. 2, pp. 149–154, 2007.
[10]  D. W. Boening, “Ecological effects, transport, and fate of mercury: a general review,” Chemosphere, vol. 40, no. 12, pp. 1335–1351, 2000.
[11]  T. Barkay, S. M. Miller, and A. O. Summers, “Bacterial mercury resistance from atoms to ecosystems,” FEMS Microbiology Reviews, vol. 27, no. 2-3, pp. 355–384, 2003.
[12]  A. M. Osborn, K. D. Bruce, P. Strike, and D. A. Ritchie, “Distribution, diversity and evolution of the bacterial mercury resistance (mer) operon,” FEMS Microbiology Reviews, vol. 19, no. 4, pp. 239–262, 1997.
[13]  L. F. Caslake, S. S. Harris, C. Williams, and N. M. Waters, “Mercury-resistant bacteria associated with macrophytes from a polluted lake,” Water, Air, and Soil Pollution, vol. 174, no. 1–4, pp. 93–105, 2006.
[14]  C. A. Liebert, J. Wireman, T. Smith, and A. O. Summers, “Phylogeny of mercury resistance (mer) operons of gram-negative bacteria isolated from the fecal flora of primates,” Applied and Environmental Microbiology, vol. 63, no. 3, pp. 1066–1076, 1997.
[15]  M. T. Madigan, J. M. Martinko, P. V. Dunlap, and D. P. Clark, Microbiologia de Brock, Artmed, Porto Alegre, Brazil, 2010.
[16]  T. K. Misra, “Bacterial resistances to inorganic mercury salts and organomercurials,” Plasmid, vol. 27, no. 1, pp. 4–16, 1992.
[17]  E. S. Boyd and T. Barkay, “The mercury resistance operon: from an origin in a geothermal environment to an efficient detoxification machine,” Frontiers in Microbiology, vol. 3, pp. 1–13, 2012.
[18]  M. Zeyaullah, G. Nabi, R. Malla, and A. Ali, “Molecular studies of E. coli mercuric reductase gene (merA) and its impact on human health,” Nepal Medical College Journal, vol. 9, no. 3, pp. 182–185, 2007.
[19]  N. Ramaiah and J. De, “Unusual rise in mercury-resistant bacteria in coastal environs,” Microbial Ecology, vol. 45, no. 4, pp. 444–454, 2003.
[20]  E. W. Koneman, S. D. Allen, V. R. Dowell, and H. M. Sommers, Diagnóstico Microbiológico: Texto e Atlas Colorido, Medicina Panamericana Editora do Brasil ltda., S?o Paulo, Brazil, 2008.
[21]  J. M. Andrews, “Determination of minimum inhibitory concentrations,” Journal of Antimicrobial Chemotherapy, vol. 48, pp. S5–S16, 2001.
[22]  S. M. Ní Chadhain, J. K. Schaefer, S. Crane, G. J. Zylstra, and T. Barkay, “Analysis of mercuric reductase (merA) gene diversity in an anaerobic mercury-contaminated sediment enrichment,” Environmental Microbiology, vol. 8, no. 10, pp. 1746–1752, 2006.
[23]  A. B. F. Pacheco, B. E. C. Guth, K. C. C. Soares, L. Nishimura, D. F. De Almeida, and L. C. S. Ferreira, “Random amplification of polymorphic DNA reveals serotype-specific clonal clusters among enterotoxigenic Escherichia coli strains isolated from humans,” Journal of Clinical Microbiology, vol. 35, no. 6, pp. 1521–1525, 1997.
[24]  G. Muyzer, E. C. De Waal, and A. G. Uitterlinden, “Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA,” Applied and Environmental Microbiology, vol. 59, no. 3, pp. 695–700, 1993.
[25]  R. A. I. Abou-Shanab, P. van Berkum, and J. S. Angle, “Heavy metal resistance and genotypic analysis of metal resistance genes in gram-positive and gram-negative bacteria present in Ni-rich serpentine soil and in the rhizosphere of Alyssum murale,” Chemosphere, vol. 68, no. 2, pp. 360–367, 2007.
[26]  A. Hassen, N. Saidi, M. Cherif, and A. Boudabous, “Resistance of environmental bacteria to heavy metals,” Bioresource Technology, vol. 64, no. 1, pp. 7–15, 1998.
[27]  M. Narita, K. Chiba, H. Nishizawa et al., “Diversity of mercury resistance determinants among Bacillus strains isolated from sediment of Minamata Bay,” FEMS Microbiology Letters, vol. 223, no. 1, pp. 73–82, 2003.
[28]  M. Zeyaullah, B. Islam, and A. Ali, “Isolation, identification and PCR amplification of merA gene from highly mercury polluted Yamuna river,” African Journal of Biotechnology, vol. 9, no. 24, pp. 3510–3514, 2010.
[29]  A. O. Summers, “Organization, expression, and evolution of genes for mercury resistance,” Annual Review of Microbiology, vol. 40, pp. 607–634, 1986.
[30]  F. Matyar, T. Akkan, Y. U?ak, and B. Eraslan, “Aeromonas and Pseudomonas: antibiotic and heavy metal resistance species from Iskenderun Bay, Turkey (northeast Mediterranean Sea),” Environmental Monitoring and Assessment, vol. 167, no. 1–4, pp. 309–320, 2010.
[31]  M. C. Hart, G. N. Elliott, A. M. Osborn, D. A. Ritchie, and P. Strike, “Diversity amongst Bacillus merA genes amplified from mercury resistant isolates and directly from mercury polluted soil,” FEMS Microbiology Ecology, vol. 27, no. 1, pp. 73–84, 1998.
[32]  J.-B. Ramond, T. Berthe, R. Duran, and F. Petit, “Comparative effects of mercury contamination and wastewater effluent input on Gram-negative merA gene abundance in mudflats of an anthropized estuary (Seine, France): a microcosm approach,” Research in Microbiology, vol. 160, no. 1, pp. 10–18, 2009.
[33]  A. M. Osborn, K. D. Bruce, P. Strike, and D. A. Ritchie, “Polymerase chain reaction-restriction fragment length polymorphism analysis shows divergence among mer determinants from gram-negative soil bacteria indistinguishable by DNA-DNA hybridization,” Applied and Environmental Microbiology, vol. 59, no. 12, pp. 4024–4030, 1993.
[34]  K. D. Bruce, “Analysis of mer gene subclasses within bacterial communities in soils and sediments resolved by fluorescent-PCR-restriction fragment length polymorphism profiling,” Applied and Environmental Microbiology, vol. 63, no. 12, pp. 4914–4919, 1997.
[35]  V. B. Mathema, B. C. Thakuri, and M. Sillanp??, “Bacterial mer operon-mediated detoxification of mercurial compounds: a short review,” Archives of Microbiology, vol. 193, no. 12, pp. 837–844, 2011.
[36]  A. H. Regua-Mangia, T. A. T. Gomes, M. A. M. Vieira, K. Irino, and L. M. Teixeira, “Molecular typing and virulence of enteroaggregative Escherichia coli strains isolated from children with and without diarrhoea in Rio de Janeiro city, Brazil,” Journal of Medical Microbiology, vol. 58, no. 4, pp. 414–422, 2009.
[37]  U. Dobrindt, “(Patho-)genomics of Escherichia coli,” International Journal of Medical Microbiology, vol. 295, no. 6-7, pp. 357–371, 2005.
[38]  A. H. Regua-Mangia, B. C. Guth, J. R. Da Costa Andrade et al., “Genotypic and phenotypic characterization of enterotoxigenic Escherichia coli (ETEC) strains isolated in Rio de Janeiro city, Brazil,” FEMS Immunology and Medical Microbiology, vol. 40, no. 2, pp. 155–162, 2004.
[39]  A. H. Regua-Mangia, T. A. Tardelli Gomes, J. R. Costa Andrade et al., “Genetic analysis of Escherichia coli strains carrying enteropathogenic Escherichia coli (EPEC) markers, isolated from children in Rio de Janeiro City, Brazil,” Brazilian Journal of Microbiology, vol. 34, no. 1, pp. 38–41, 2003.
[40]  M. A. Schmidt, “LEEways: tales of EPEC, ATEC and EHEC,” Cellular Microbiology, vol. 12, no. 11, pp. 1544–1552, 2010.
[41]  S. Ishii and M. J. Sadowsky, “Escherichia coli in the environment: implications for water quality and human health,” Microbes and Environments, vol. 23, no. 2, pp. 101–108, 2008.
[42]  J. L. Sanz and T. K?chling, “Molecular biology techniques used in wastewater treatment: an overview,” Process Biochemistry, vol. 42, no. 2, pp. 119–133, 2007.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133