全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Effect of Cholesterol Removal Processing Using β-Cyclodextrin on Main Components of Milk

DOI: 10.1155/2013/215305

Full-Text   Cite this paper   Add to My Lib

Abstract:

Various concentrations (0%, 0.5%, 1% and 1.5%) of β-CD were mixed with different fat contents (1%, 2.5% and 3%) of raw (unhomogenized) and homogenized milk at two mixing temperatures of 8 and 20°C. The cholesterol residue, fat, protein, lactose, solid nonfat (SNF), density, and ash content of milk were measured for each treatment. The results statistically analysed and showed that the cholesterol content of milk remarkably decreased as the β-CD was increased particularly in homogenized milk at 20°C. However, the reduction rate of cholesterol was decreased when extra β-CD was added due to its intermolecular reactions. The maximum cholesterol reduction was achieved at the level of 1% β-CD. The fat content, SNF, protein, lactose, and density content were decreased with increasing β-CD whereas it did not affect ash content. 1. Introduction According to the World Health Organization, 2010 report, cardiovascular diseases are the first among the top 10 causes of death. An estimated 16.7 million people or 29.2% of total global deaths are due to the various forms of cardiovascular disease (CVD) [1, 2]. The direct relation between high blood cholesterol and CVD has been proved. Cholesterol is a typical animal sterol; for example, its content in milk fat is 95%–98% [3]. The main source of cholesterol in food comes from animal origin, such as meat, milk, and eggs. The other major source of cholesterol is produced by the liver in the body [4]. Milk and dairy products contain relatively high level cholesterol that can elevate the blood cholesterol [5]. First attempts on reducing cholesterol in food go back to early twentieth century. Denis and Minot [6] determined the cholesterol content of animal and human milks and they suggested the relation between blood plasma cholesterol and food intake. Although so many papers were published about the relation of food intake and increasing of blood plasma cholesterol, no serious attempt took place on reducing cholesterol in food until 1960. Since the 1960s, large number of physicochemical methods was recommended to reduce cholesterol in food as well as blood cholesterol [7]. Cholesterol could be removed in an efficient manner from milk fat up to 90% using supercritical CO2 technology [8]. Bobby and Joseph Jr. [9] developed and patented a process for the production of cholesterol-free milk based on extraction of cholesterol from the milk fat globule membranes using an organic polar solvent and without substantial loss of solid milk fat. Solvent-free and low cholesterol products were recovered from the reseparated and washed

References

[1]  WHO, “Cardiovascular disease: prevention and control,” Worldwide Missions Statistics, 2010, http://www.who.org/.
[2]  World Health Organization (WHO) World Health Statistics, “Global health indicator tables and footnotes part 2,” 2010, http://www.who.int/whosis/whostat/2010/en/.
[3]  M. Careri, L. Elviri, and A. Mangia, “Liquid chromatography—UV determination and liquid chromatography—atmospheric pressure chemical ionization mass spectrometric characterization of sitosterol and stigmasterol in soybean oil,” Journal of Chromatography A, vol. 935, no. 1-2, pp. 249–257, 2001.
[4]  S. Snider and A. Wehrman, “Cholesterol, Food and Nutrition Specialist,” 1997, http://ag.udel.edu/extension/fnutri/pdf/Nutrition/fnf-18.pdf.
[5]  B. Nataf, O. Milckelson, A. L. Keys, and W. E. Peterson, “The cholesterol content of cows’ milk,” Journal of Nutrition, vol. 3, pp. 13–18, 2009.
[6]  W. Denis and A. S. Minot, “Constituents of milk non protein nitrogen,” Journal of Biological Chemistry, vol. 37, pp. 353–366, 1919.
[7]  M. I. Gurr, “Dietary lipids and coronary disease: old evidence, new perspectives and progress,” Lipid Research, vol. 31, pp. 195–243, 1992.
[8]  R. Bradely and L. Jir, “Removal of cholesterol from milk fat using supercritical carbon dioxide,” Journal Dairy Science, vol. 72, pp. 2834–2840, 1989.
[9]  R. J. Bobby and A. C. Joseph Jr., “Production of low cholesterol milk by organic solvent extraction,” US patent. 4,997,668, 1991.
[10]  T. Richardson, D. Calif, R. Jimenez, and F. Champaign, “Process to remove cholesterol from dairy products,” US Patent No: 5,326,579, 1994.
[11]  I. C. Munro, P. M. Newberne, V. R. Young, and A. B?r, “Safety assessment of γ-cyclodextrin,” Regulatory Toxicology and Pharmacology, vol. 39, pp. S3–S13, 2004.
[12]  G. Astray, C. Gonzalez-Barreiro, J. C. Mejuto, R. Rial-Otero, and J. Simal-Gándara, “A review on the use of cyclodextrins in foods,” Food Hydrocolloids, vol. 23, no. 7, pp. 1631–1640, 2009.
[13]  E. M. M. Del Valle, “Cyclodextrins and their uses: a review,” Process Biochemistry, vol. 39, no. 9, pp. 1033–1046, 2004.
[14]  A. R. Hedges, “Industrial applications of cyclodextrins,” Chemical Reviews, vol. 98, no. 5, pp. 2035–2044, 1998.
[15]  S.-H. Chiu, T.-W. Chung, R. Giridhar, and W.-T. Wu, “Immobilization of β-cyclodextrin in chitosan beads for separation of cholesterol from egg yolk,” Food Research International, vol. 37, no. 3, pp. 217–223, 2004.
[16]  J. Graille, D. Pioch, M. Serpelloni, and L. Mentink, “Process for preparing dairy products with a low content of sterols, particularly of cholesterol,” US. Patent. 5,264,226, 1993.
[17]  D. K. Lee, J. Ahn, and H. S. Kwak, “Cholesterol removal from homogenized milk with β-cyclodextrin,” Journal of Dairy Science, vol. 82, no. 11, pp. 2327–2330, 1999.
[18]  H. S. Kwak, S. H. Kim, J. H. Kim, H. J. Choi, and J. Kang, “Immobilized β-cyclodextrin as a simple and recyclable method for cholesterol removal in milk,” Archives of Pharmacal Research, vol. 27, no. 8, pp. 873–877, 2004.
[19]  J. Ahn and H. S. Kwak, “Optimizing cholesterol removal in cream using β-cyclodextrin and response surface methodology,” Journal of Food Science, vol. 64, no. 4, pp. 629–632, 1999.
[20]  S. H. Kim, J. Ahn, and H. S. Kwak, “Crosslinking of beta-cyclodextrin on cholesterol removal from milk,” Archives of Pharmacal Research, vol. 27, no. 11, pp. 1183–1187, 2004.
[21]  S.-H. Kim, E.-M. Han, J. Ahn, and H.-S. Kwak, “Effect of crosslinked β-cyclodextrin on quality of cholesterol-reduced cream cheese,” Asian-Australasian Journal of Animal Sciences, vol. 18, no. 4, pp. 584–589, 2005.
[22]  S. H. Kim, H. Y. Kim, and H. S. Kwak, “Cholesterol removal from lard with cross-linked β-cyclodextrin,” Asian-Australasian Journal of Animal Sciences, vol. 20, no. 9, pp. 1468–1472, 2007.
[23]  H. S. Kwak, S. H. Kim, and J. Kang, “Methods for cross linking betacyclodextrin for the cholesterol trapping and regeneration there of,” US Patent No: 2007/0093447, 2007.
[24]  H. M. A. M. Dias, F. Berbicz, F. Pedrochi, M. L. Baesso, and G. Matioli, “Butter cholesterol removal using different complexation methods with beta-cyclodextrin, and the contribution of photoacoustic spectroscopy to the evaluation of the complex,” Food Research International, vol. 43, no. 4, pp. 1104–1110, 2010.
[25]  H. J. Ha, J. E. Lee, Y. H. Chang, and H.-S. Kwak, “Entrapment of nutrients during cholesterol removal from cream by crosslinked β-cyclodextrin,” International Journal of Dairy Technology, vol. 63, no. 1, pp. 119–126, 2010.
[26]  L. V. Klatt, “Cholesterol analysis in food by direct saponification—gas chromatographic method: collaborative study,” Journal of AOAC International, vol. 78, pp. 75–79, 1995.
[27]  H. S. Kwak, J. J. Ahn, and D. K. Lee, “Method for removing cholesterol from milk and cream,” US Patent No. 6110517, 2000.
[28]  H. S. Kwak, H. M. Sun, J. Ahn, and H. J. Kwon, “Optimization of β- CD recycling process for cholesterol removal in cream,” Asian-Australasian Journal of Animal Sciences, vol. 14, no. 4, pp. 548–552, 2001.
[29]  D. G. Oakenfull and G. S. Sihdu, “Cholesterol reduction,” International Patent 91/11114, 1991.
[30]  G. C. Yen and L. T. Tsui, “Cholesterol removal from a lard mixture with β- CD,” Journal of Food Science, vol. 60, pp. 561–564, 1995.
[31]  H. J. Ha, S. S. Jeon, Y. H. Chang, and H. S. Kwak, “Entrapment of milk nutrients during cholesterol removal from milk by crosslinked β-cyclodextrin,” Korean Journal for Food Science of Animal Resources, vol. 29, no. 5, pp. 566–572, 2009.
[32]  H. S. Kwak, C. S. Jung, S. Y. Shim, and J. Ahn, “Removal of cholesterol from cheddar cheese by β-cyclodextrin,” Journal of Agricultural and Food Chemistry, vol. 50, no. 25, pp. 7293–7298, 2002.
[33]  J. Suzuki, “Molecular encapsulation of volatile, easily oxydizable flavour substances by cyclodextrins,” Acta Chimica Academiae Scientiarum Hungaricae, vol. 101, pp. 27–46, 1975.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133