全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Identification of Cassava MicroRNAs under Abiotic Stress

DOI: 10.1155/2013/857986

Full-Text   Cite this paper   Add to My Lib

Abstract:

The study of microRNAs (miRNAs) in plants has gained significant attention in recent years due to their regulatory role during development and in response to biotic and abiotic stresses. Although cassava (Manihot esculenta Crantz) is tolerant to drought and other adverse conditions, most cassava miRNAs have been predicted using bioinformatics alone or through sequencing of plants challenged by biotic stress. Here, we use high-throughput sequencing and different bioinformatics methods to identify potential cassava miRNAs expressed in different tissues subject to heat and drought conditions. We identified 60?miRNAs conserved in other plant species and 821 potential cassava-specific miRNAs. We also predicted 134 and 1002 potential target genes for these two sets of sequences. Using real time PCR, we verified the condition-specific expression of 5 cassava small RNAs relative to a non-stress control. We also found, using publicly available expression data, a significantly lower expression of the predicted target genes of conserved and nonconserved miRNAs under drought stress compared to other cassava genes. Gene Ontology enrichment analysis along with condition specific expression of predicted miRNA targets, allowed us to identify several interesting miRNAs which may play a role in stress-induced posttranscriptional regulation in cassava and other plants. 1. Introduction MicroRNAs (miRNAs) are short noncoding small RNA molecules that are transcribed in plants and animals and play key roles in posttranscriptional gene regulation [1]. Mature miRNAs are embedded into larger primary transcripts called pri-miRNAs and are released through a two-step cleavage process [2]. The first cleavage is performed by a Dicer homolog, called Dicer-like 1 (DCL1), which generates a stem-loop structure called precursor miRNA (premiRNA). Dicer makes a second set of cuts to produce the 20–24?nt mature miRNA duplexed with a complementary miRNA*. The double-stranded fragment is exported to the cytoplasm where it dissociates and the mature 21?nt miRNA is incorporated into the RNA-induced silencing complex (RISC). Guided by the miRNA sequence, the RISC complex down-regulates specific target genes either by cleaving or translational repression of their messenger RNAs [3–5]. In plants, regulation of gene expression by miRNAs is essential for normal growth and development, including leaf morphogenesis, patterning and polarity establishment, developmental timing, floral organ identity, and phytohormone signaling [3, 6]. Furthermore, miRNAs are also involved in plants’ adaptation to biotic

References

[1]  D. P. Bartel, “MicroRNAs: genomics, biogenesis, mechanism, and function,” Cell, vol. 116, no. 2, pp. 281–297, 2004.
[2]  L. Song, M. Han, J. Lesicka, and N. Fedoroff, “Arabidopsis primary microRNA processing proteins HYL1 and DCL1 define a nuclear body distinct from the Cajal body,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 13, pp. 5437–5442, 2007.
[3]  M. W. Jones-Rhoades, D. P. Bartel, and B. Bartel, “MicroRNAs and their regulatory roles in plants,” Annual Review of Plant Biology, vol. 57, pp. 19–53, 2006.
[4]  O. Voinnet, “Origin, biogenesis, and activity of plant MicroRNAs,” Cell, vol. 136, no. 4, pp. 669–687, 2009.
[5]  P. Brodersen, L. Sakvarelidze-Achard, M. Bruun-Rasmussen et al., “Widespread translational inhibition by plant miRNAs and siRNAs,” Science, vol. 320, no. 5880, pp. 1185–1190, 2008.
[6]  G. Wu, “Plant microRNAs and development,” Journal of Genetics and Genomics, vol. 40, no. 5, pp. 217–230, 2013.
[7]  R. Sunkar, V. Chinnusamy, J. Zhu, and J. Zhu, “Small RNAs as big players in plant abiotic stress responses and nutrient deprivation,” Trends in Plant Science, vol. 12, no. 7, pp. 301–309, 2007.
[8]  L. I. Shukla, V. Chinnusamy, and R. Sunkar, “The role of microRNAs and other endogenous small RNAs in plant stress responses,” Biochimica et Biophysica Acta, vol. 1779, no. 11, pp. 743–748, 2008.
[9]  B. Khraiwesh, J. Zhu, and J. Zhu, “Role of miRNAs and siRNAs in biotic and abiotic stress responses of plants,” Biochimica et Biophysica Acta, vol. 1819, no. 2, pp. 137–148, 2012.
[10]  R. Sunkar, “MicroRNAs with macro-effects on plant stress responses,” Seminars in Cell and Developmental Biology, vol. 21, no. 8, pp. 805–811, 2010.
[11]  S. Griffiths-Jones, H. K. Saini, S. van Dongen, and A. J. Enright, “miRBase: tools for microRNA genomics,” Nucleic Acids Research, vol. 36, supplement 1, pp. D154–D158, 2008.
[12]  B. C. Meyers, F. F. Souret, C. Lu, and P. J. Green, “Sweating the small stuff: microRNA discovery in plants,” Current Opinion in Biotechnology, vol. 17, no. 2, pp. 139–146, 2006.
[13]  G. Sun, “MicroRNAs and their diverse functions in plants,” Plant Molecular Biology, vol. 80, no. 1, pp. 17–36, 2012.
[14]  M. A. El-Sharkawy, “Cassava biology and physiology,” Plant Molecular Biology, vol. 56, no. 4, pp. 481–501, 2004.
[15]  H. Mathews, C. Schopke, R. Carcamo, P. Chavarriaga, C. Fauquet, and R. N. Beachy, “Improvement of somatic embryogenesis and plant recovery in cassava,” Plant Cell Reports, vol. 12, no. 6, pp. 328–333, 1993.
[16]  T. Sakurai, G. Plata, F. Rodríguez-Zapata et al., “Sequencing analysis of 20,000 full-length cDNA clones from cassava reveals lineage specific expansions in gene families related to stress response,” BMC Plant Biology, vol. 7, p. 66, 2007.
[17]  S. Amiteye, J. M. Corral, and T. F. Sharbel, “Overview of the potential of microRNAs and their target gene detection for cassava (Manihot esculenta) improvement,” African Journal of Biotechnology, vol. 10, no. 14, pp. 2562–2573, 2011.
[18]  O. Patanun, M. Lertpanyasampatha, P. Sojikul, U. Viboonjun, and J. Narangajavana, “Computational identification of MicroRNAs and their targets in Cassava (Manihot esculenta Crantz.),” Molecular Biotechnology, vol. 53, no. 3, pp. 257–269, 2013.
[19]  á. L. Pérez-Quintero, A. Quintero, O. Urrego, P. Vanegas, and C. López, “Bioinformatic identification of cassava miRNAs differentially expressed in response to infection by Xanthomonas axonopodis pv. manihotis,” BMC Plant Biology, vol. 12, no. 1, p. 29, 2012.
[20]  C. Zeng, W. Wang, Y. Zheng et al., “Conservation and divergence of microRNAs and their functions in Euphorbiaceous plants,” Nucleic Acids Research, vol. 38, no. 3, Article ID gkp1035, pp. 981–995, 2009.
[21]  S. Lv, X. Nie, L. Wang et al., “Identification and characterization of microRNAs from barley (hordeum vulgare L.) by high-throughput sequencing,” International Journal of Molecular Sciences, vol. 13, no. 3, pp. 2973–2984, 2012.
[22]  R. Sunkar, T. Girke, P. K. Jain, and J. Zhu, “Cloning and characterization of microRNAs from rice,” Plant Cell, vol. 17, no. 5, pp. 1397–1411, 2005.
[23]  M. Martin, “Cutadapt removes adapter sequences from high-throughput sequencing reads,” EMBnet.Journal, vol. 17, no. 1, 2011.
[24]  S. W. Burge, J. Daub, R. Eberhardt et al., “Rfam 11.0:10 years of RNA families,” Nucleic Acids Research, vol. 41, Database issue, pp. D226–D232, 2013.
[25]  P. Lamesch, T. Z. Berardini, D. Li, et al., “The Arabidopsis Information Resource (TAIR): improved gene annotation and new tools,” Nucleic Acids Research, vol. 40, Database issue, pp. D1202–D1210, 2012.
[26]  P. Pelaez, M. S. Trejo, L. P. Iniguez et al., “Identification and characterization of microRNAs in Phaseolus vulgaris by high-throughput sequencing,” BMC Genomics, vol. 13, p. 83, 2012.
[27]  S. F. Altschul, T. L. Madden, A. A. Sch?ffer et al., “Gapped BLAST and PSI-BLAST: a new generation of protein database search programs,” Nucleic Acids Research, vol. 25, no. 17, pp. 3389–3402, 1997.
[28]  B. Langmead, C. Trapnell, M. Pop, and S. L. Salzberg, “Ultrafast and memory-efficient alignment of short DNA sequences to the human genome,” Genome Biology, vol. 10, no. 3, p. R25, 2009.
[29]  S. Prochnik, P. R. Marri, B. Desany et al., “The Cassava genome: current progress, future directions,” Tropical Plant Biology, vol. 5, no. 1, pp. 88–94, 2012.
[30]  T. P. Frazier, F. Xie, A. Freistaedter, C. E. Burklew, and B. Zhang, “Identification and characterization of microRNAs and their target genes in tobacco (nicotiana tabacum),” Planta, vol. 232, no. 6, pp. 1289–1308, 2010.
[31]  R. Zhang, D. Marshall, G. J. Bryan, and C. Hornyik, “Identification and characterization of miRNA transcriptome in potato by high-throughput sequencing,” PLoS One, vol. 8, no. 2, Article ID e57233, 2013.
[32]  X. Yang and L. Li, “miRDeep-P: a computational tool for analyzing the microRNA transcriptome in plants,” Bioinformatics, vol. 27, no. 18, Article ID btr430, pp. 2614–2615, 2011.
[33]  M. R. Friedl?nder, W. Chen, C. Adamidi et al., “Discovering microRNAs from deep sequencing data using miRDeep,” Nature Biotechnology, vol. 26, no. 4, pp. 407–415, 2008.
[34]  I. L. Hofacker, W. Fontana, P. F. Stadler, L. S. Bonhoeffer, M. Tacker, and P. Schuster, “Fast folding and comparison of RNA secondary structures,” Monatshefte für Chemie Chemical Monthly, vol. 125, no. 2, pp. 167–188, 1989.
[35]  S. Moxon, F. Schwach, T. Dalmay, D. MacLean, D. J. Studholme, and V. Moulton, “A toolkit for analysing large-scale plant small RNA datasets,” Bioinformatics, vol. 24, no. 19, pp. 2252–2253, 2008.
[36]  B. C. Meyers, M. J. Axtell, B. Bartel et al., “Criteria for annotation of plant microRNAs,” Plant Cell, vol. 20, no. 12, pp. 3186–3190, 2008.
[37]  A. Mathelier and A. Carbone, “MIReNA: finding microRNAs with high accuracy and no learning at genome scale and from deep sequencing data,” Bioinformatics, vol. 26, no. 18, Article ID btq329, pp. 2226–2234, 2010.
[38]  M. W. Jones-Rhoades and D. P. Bartel, “Computational identification of plant MicroRNAs and their targets, including a stress-induced miRNA,” Molecular Cell, vol. 14, no. 6, pp. 787–799, 2004.
[39]  X. Dai and P. X. Zhao, “PsRNATarget: a plant small RNA target analysis server,” Nucleic Acids Research, vol. 39, supplement 2, pp. W155–W159, 2011.
[40]  D. M. Goodstein, S. Shu, R. Howson et al., et al., “Phytozome: a comparative platform for green plant genomics,” Nucleic Acids Research, vol. 40, Database issue, pp. D1178–D1186, 2012.
[41]  Z. Du, X. Zhou, Y. Ling, Z. Zhang, and Z. Su, “agriGO: a GO analysis toolkit for the agricultural community,” Nucleic Acids Research, vol. 38, no. 2, Article ID gkq310, pp. W64–W70, 2010.
[42]  H. J. Bussemaker, L. D. Ward, and A. Boorsma, “Dissecting complex transcriptional responses using pathway-level scores based on prior information,” BMC Bioinformatics, vol. 8, supplement 6, p. S6, 2007.
[43]  Y. Benjamini and D. Yekutieli, “The control of the false discovery rate in multiple testing under dependency,” Annals of Statistics, vol. 29, no. 4, pp. 1165–1188, 2001.
[44]  C. Chen, R. Tan, L. Wong, R. Fekete, and J. Halsey, “Quantitation of MicroRNAs by real-time RT-qPCR,” in PCR Protocols, D. Park, Ed., pp. 113–134, Humana Press, New York, NY, USA, 2011.
[45]  J. Feng, K. Wang, X. Liu, S. Chen, and J. Chen, “The quantification of tomato microRNAs response to viral infection by stem-loop real-time RT-PCR,” Gene, vol. 437, no. 1-2, pp. 14–21, 2009.
[46]  S. D. Fiedler, M. Z. Carletti, and L. K. Christenson, “Quantitative RT-PCR methods for mature microRNA expression analysis,” Methods in Molecular Biology, vol. 630, pp. 49–64, 2010.
[47]  N. Fahlgren, M. D. Howell, K. D. Kasschau et al., “High-throughput sequencing of Arabidopsis microRNAs: evidence for frequent birth and death of miRNA genes,” PLoS ONE, vol. 2, no. 2, Article ID e219, 2007.
[48]  G. Szittya, S. Moxon, D. M. Santos et al., “High-throughput sequencing of Medicago truncatula short RNAs identifies eight new miRNA families,” BMC Genomics, vol. 9, p. 593, 2008.
[49]  S. Moxon, R. Jing, G. Szittya et al., “Deep sequencing of tomato short RNAs identifies microRNAs targeting genes involved in fruit ripening,” Genome Research, vol. 18, no. 10, pp. 1602–1609, 2008.
[50]  R. D. Morin, G. Aksay, E. Dolgosheina et al., “Comparative analysis of the small RNA transcriptomes of Pinus contorta and Oryza sativa,” Genome Research, vol. 18, no. 4, pp. 571–584, 2008.
[51]  J. R. Puzey, A. Karger, M. Axtell, and E. M. Kramer, “Deep annotation of populus trichocarpa micrornas from diverse tissue sets,” PLoS ONE, vol. 7, no. 3, Article ID e33034, 2012.
[52]  B. Zhang, X. Pan, C. H. Cannon, G. P. Cobb, and T. A. Anderson, “Conservation and divergence of plant microRNA genes,” Plant Journal, vol. 46, no. 2, pp. 243–259, 2006.
[53]  G. B. Martin, A. J. Bogdanove, and G. Sessa, “Understanding the functions of plant disease resistance proteins,” Annual Review of Plant Biology, vol. 54, pp. 23–61, 2003.
[54]  Y. Utsumi, M. Tanaka, T. Morosawa et al., “Transcriptome analysis using a high-density oligomicroarray under drought stress in various genotypes of cassava: an important tropical crop,” DNA Research, vol. 19, no. 4, pp. 335–345, 2012.
[55]  A. A. Covarrubias and J. L. Reyes, “Post-transcriptional gene regulation of salinity and drought responses by plant microRNAs,” Plant, Cell and Environment, vol. 33, no. 4, pp. 481–489, 2010.
[56]  L. Zhou, Y. Liu, Z. Liu, D. Kong, M. Duan, and L. Luo, “Genome-wide identification and analysis of drought-responsive microRNAs in Oryza sativa,” Journal of Experimental Botany, vol. 61, no. 15, pp. 4157–4168, 2010.
[57]  M. Xin, Y. Wang, Y. Yao et al., “Diverse set of microRNAs are responsive to powdery mildew infection and heat stress in wheat (Triticum aestivum L.),” BMC Plant Biology, vol. 10, p. 123, 2010.
[58]  R. Sunkar and J. Zhu, “Novel and stress regulated microRNAs and other small RNAs from Arabidopsis w inside box sign,” Plant Cell, vol. 16, no. 8, pp. 2001–2019, 2004.
[59]  B. Li, Y. Qin, H. Duan, W. Yin, and X. Xia, “Genome-wide characterization of new and drought stress responsive microRNAs in Populus euphratica,” Journal of Experimental Botany, vol. 62, no. 11, pp. 3765–3779, 2011.
[60]  I. Trindade, C. Capit?o, T. Dalmay, M. P. Fevereiro, and D. M. dos Santos, “miR398 and miR408 are up-regulated in response to water deficit in Medicago truncatula,” Planta, vol. 231, no. 3, pp. 705–716, 2010.
[61]  H. H. Liu, X. Tian, Y. J. Li, C. A. Wu, and C. C. Zheng, “Microarray-based analysis of stress-regulated microRNAs in Arabidopsis thaliana,” RNA, vol. 14, no. 5, pp. 836–843, 2008.
[62]  A. Gallo, M. Tandon, I. Alevizos, and G. G. Illei, “The majority of microRNAs detectable in serum and saliva is concentrated in exosomes,” PLoS ONE, vol. 7, no. 3, Article ID e30679, 2012.
[63]  G. Hyman, A. Bellotti, L. Lopez-Lavalle, N. Palmer, and B. Creamer, “Cassava and overcoming the challenges of global climatic change: report of the second scientific conference of the Global Cassava Partnership for the 21st century,” Food Security, vol. 4, no. 4, pp. 671–674, 2012.
[64]  L. F. Turyagyenda, E. B. Kizito, M. Ferguson et al., “Physiological and molecular characterization of drought responses and identification of candidate tolerance genes in cassava,” AoB Plants, vol. 5, Article ID plt007, 2013.
[65]  Y. Ding, Y. Tao, and C. Zhu, “Emerging roles of microRNAs in the mediation of drought stress response in plants,” Journal of Experimental Botany, vol. 64, no. 11, pp. 3077–3086, 2013.
[66]  Y. Ding, Y. Tao, and C. Zhu, “Emerging roles of microRNAs in the mediation of drought stress response in plants,” Journal of Experimental Botany, vol. 64, no. 11, pp. 3077–3086, 2013.
[67]  S. Zhang, Y. Yue, L. Sheng et al., “PASmiR: a literature-curated database for miRNA molecular regulation in plant response to abiotic stress,” BMC Plant Biology, vol. 13, p. 33, 2013.
[68]  A. S. Saad, X. Li, H. P. Li et al., “A rice stress-responsive NAC gene enhances tolerance of transgenic wheat to drought and salt stresses,” Plant Science, vol. 203-204, pp. 33–40, 2013.
[69]  K. Nakashima, H. Takasaki, J. Mizoi, K. Shinozaki, and K. Yamaguchi-Shinozaki, “NAC transcription factors in plant abiotic stress responses,” Biochimica et Biophysica Acta, vol. 1819, no. 2, pp. 97–103, 2012.
[70]  X. Cai, E. J. Davis, J. Ballif et al., “Mutant identification and characterization of the laccase gene family in Arabidopsis,” Journal of Experimental Botany, vol. 57, no. 11, pp. 2563–2569, 2006.
[71]  T. H. Ferreira, A. Gentile, R. D. Vilela et al., “microRNAs associated with drought response in the bioenergy crop sugarcane (Saccharum spp.),” PLoS One, vol. 7, no. 10, Article ID e46703, 2012.
[72]  N. Tuteja, “Abscisic acid and abiotic stress signaling,” Plant Signaling and Behavior, vol. 2, no. 3, pp. 135–138, 2007.
[73]  X. Dai, X. Cheng, Y. Li, W. Tang, and L. Han, “Differential expression of gibberellin 20 oxidase gene induced by abiotic stresses in Zoysiagrass (Zoysia japonica),” Biologia, vol. 67, no. 4, pp. 681–688, 2012.
[74]  M. J. Jeong, B. S. Choi, D. W. Bae et al., “Differential expression of kenaf phenylalanine ammonia-lyase (PAL) ortholog during developmental stages and in response to abiotic stresses,” Plant Omics Journal, vol. 5, no. 4, pp. 392–399, 2012.
[75]  J. M. Bardzik, H. V. Marsh, and J. R. Havis, “Effects of water stress on the activities of three enzymes in maize seedlings,” Plant Physiology, vol. 47, no. 6, pp. 828–831, 1971.
[76]  A. Gholizadeh, “Effects of drought on the activity of Phenylalanine ammonia lyase in the leaves and roots of maize inbreds,” Australian Journal of Basic and Applied Sciences, vol. 5, no. 9, pp. 952–956, 2011.
[77]  D. Golldack, I. Lüking, and O. Yang, “Plant tolerance to drought and salinity: stress regulating transcription factors and their functional significance in the cellular transcriptional network,” Plant Cell Reports, vol. 30, no. 8, pp. 1383–1391, 2011.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133