全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

A Possible Molecular Mechanism of Immunomodulatory Activity of Bilirubin

DOI: 10.1155/2013/467383

Full-Text   Cite this paper   Add to My Lib

Abstract:

Bilirubin is an endogenous product of heme degradation in mammals. Bilirubin has long been considered as a cytotoxic waste product that needs to be excreted. However, increasing evidence suggests that bilirubin possesses multiple biological activities. In particular, recent studies have shown that bilirubin should be a protective factor for several autoimmune diseases such as rheumatoid arthritis, multiple sclerosis, and systemic lupus erythematosus. Since these autoimmune diseases are closely associated with specific types of human leukocyte antigens (HLAs), we have hypothesized that bilirubin might bind to the antigenic peptide-binding groove of the HLA molecules and exert its immunosuppressive actions. In order to evaluate the hypothesis, theoretical docking studies between bilirubin and the relevant HLA molecules have been undertaken. The in silico studies have clearly shown that bilirubin may bind to the antigenic peptide-binding groove of the HLA molecules relevant to the autoimmune diseases with significant affinity. The bound bilirubin may block the binding of antigenic peptides to be presented to T cell receptors and lead to suppression of the autoimmune responses. Based on this hypothesis new drug discovery research for autoimmune diseases will be conducted. 1. Introduction Bilirubin is an end product of heme degradation in mammals. Although bilirubin has long been considered as a cytotoxic waste product, the beneficial properties of bilirubin have been identified during the last few decades. One possible physiologic role of bilirubin is as an antioxidant [1], and most current studies on the physiological functions of bilirubin focus on this effect. Although other functions of bilirubin besides the antioxidant effects are not well documented, increasing evidence suggests that bilirubin possesses potential immunomodulatory properties. In particular, recent studies have suggested that bilirubin effectively suppresses several autoimmune diseases. Liu and colleagues have demonstrated that bilirubin possesses powerful immunomodulatory activity and suppresses experimental autoimmune encephalomyelitis (EAE) [2]. Fischman and colleagues have shown that higher serum total bilirubin levels are protective against rheumatoid arthritis (RA) based on the secondary analysis of National Health and Nutrition Examination Survey data collected between 2003 and 2006 [3]. Peng and colleagues have observed that serum bilirubin concentrations in patients with multiple sclerosis (MS) are significantly reduced [4]. Vítek and colleagues have found that serum bilirubin

References

[1]  T. W. Sedlak and S. H. Snyder, “Bilirubin benefits: cellular protection by a biliverdin reductase antioxidant cycle,” Pediatrics, vol. 113, no. 6, pp. 1776–1782, 2004.
[2]  Y. Liu, P. Li, J. Lu et al., “Bilirubin possesses powerful immunomodulatory activity and suppresses experimental autoimmune encephalomyelitis,” Journal of Immunology, vol. 181, no. 3, pp. 1887–1897, 2008.
[3]  D. Fischman, A. Valluri, V. S. Gorrepati, M. E. Murphy, I. Peters, and P. Cheriyath, “Bilirubin as a protective factor for rheumatoid arthritis: an NHANES study of 2003–2006 data,” Journal of Clinical Medicine Research, vol. 2, no. 6, pp. 256–260, 2012.
[4]  F. Peng, X. Deng, Y. Yu, et al., “Serum bilirubin concentration and multiple sclerosis,” Journal of Clinical Neuroscience, vol. 18, no. 10, pp. 1355–1359, 2011.
[5]  L. Vítek, L. Muchová, E. Jan?ová, et al., “Association of systemic lupus erythematosus with low serum bilirubin levels,” Scandinavian Journal of Rheumatology, vol. 39, no. 6, pp. 480–484, 2010.
[6]  MOE (Molecular Operating Environment), 01, Chemical Computing Group: Montreal, Canada, 2011.
[7]  P. Labute and M. Santavy, “Locating Binding Sites in Protein Structures,” Journal Chemical Computing Group, 2007, http://www.chemcomp.com/journal/sitefind.htm.
[8]  J. Goto, R. Kataoka, H. Muta, and N. Hirayama, “ASEDock-docking based on alpha spheres and excluded volumes,” Journal of Chemical Information and Modeling, vol. 48, no. 3, pp. 583–590, 2008.
[9]  C. R. Corbeil, C. I. Williams, and P. Labute, “Variability in docking success rates due to dataset preparation,” Journal of Computer-Aided Molecular Design, vol. 26, no. 6, pp. 775–786, 2012.
[10]  P. T. Illing, J. P. Vivian, N. L. Dudek, et al., “Immune self-reactivity triggered by drug-modified HLA-peptide repertoire,” Nature, vol. 486, no. 7404, pp. 554–558, 2012.
[11]  F. C. Bernstein, T. F. Koetzle, and G. J. B. Williams, “The protein data bank: a computer based archival file for macromolecular structures,” Journal of Molecular Biology, vol. 112, no. 3, pp. 535–542, 1977.
[12]  A. F. McDonagh, L. A. Palma, and D. A. Lightner, “Blue light and bilirubin excretion,” Science, vol. 208, no. 4440, pp. 145–151, 1980.
[13]  M. Levitt, “Accurate modeling of protein conformation by automatic segment matching,” Journal of Molecular Biology, vol. 226, no. 2, pp. 507–533, 1992.
[14]  T. Fechteler, U. Dengler, and D. Schomburg, “Prediction of protein three-dimensional structures in insertion and deletion regions: a procedure for searching data bases of representative protein fragments using geometric scoring criteria,” Journal of Molecular Biology, vol. 253, no. 1, pp. 114–131, 1995.
[15]  S. J. Weiner, P. A. Kollman, D. T. Nguyen, and D. A. Case, “An all atom force field for simulations of proteins and nucleic acids,” Journal of Computational Chemistry, vol. 7, no. 2, pp. 230–252, 1986.
[16]  N. M. Khan and T. B. Poduval, “Immunomodulatory and immunotoxic effects of bilirubin: molecular mechanisms,” Journal of Leukocyte Biology, vol. 90, no. 5, pp. 997–1015, 2011.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133