全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

In Vitro Antibacterial and Antibiotic Resistance Modifying Effect of Bioactive Plant Extracts on Methicillin-Resistant Staphylococcus epidermidis

DOI: 10.1155/2013/760969

Full-Text   Cite this paper   Add to My Lib

Abstract:

The crude extracts of plants from Asteraceae and Lamiaceae family and essential oils from Salvia officinalis and Salvia sclarea were studied for their antibacterial as well as antibiotic resistance modifying activity. Using disc diffusion and broth microdilution assays we determined higher antibacterial effect of three Salvia spp. and by evaluating the leakage of 260?nm absorbing material we detected effect of extracts and, namely, of essential oils on the disruption of cytoplasmic membrane. The evaluation of in vitro interactions between plant extracts and oxacillin described in terms of fractional inhibitory concentration (FIC) indices revealed synergistic or additive effects of plant extracts and clearly synergistic effects of essential oil from Salvia officinalis with oxacillin in methicillin-resistant Staphylococcus epidermidis. 1. Introduction Staphylococcus epidermidis belongs to the group of coagulase negative staphylococci (CoNS). It is commensal microorganism that constitutes a major component of the normal skin and mucosal microflora of humans [1]. However, in recent years these bacteria have emerged as an opportunistic pathogen, important causative agents of bacteremia, and the leading cause of nosocomial infections particularly associated with indwelling medical devices (e.g., prosthetic joints and heart valves) and in individuals with a compromised immune system (e.g., cancer patients and neonates) [2, 3]. Staphylococcus epidermidis pathogenesis relies on the ability to adhere and form biofilms on the surfaces of the medical devices mentioned earlier [4]. Staphylococci are considered as naturally susceptible to almost all antimicrobial agents developed but at the same time have a reputation of rapidly developing resistance [5]. CoNS, especially S. epidermidis, are often multiresistant, including resistance to methicillin. Resistance to methicillin is at 75–90% among hospital isolates of S. epidermidis, which is even higher than the corresponding rate for S. aureus (40–60%) [6]. In addition to methicillin resistance, S. epidermidis strains have acquired resistance to several other antibiotics. Most antibiotic resistance genes are plasmid-encoded and are more often found in methicillin-resistant than methicillin-susceptible strains [7]. These facts together with the ubiquity of S. epidermidis as a human commensal microorganism render this bacterium an optimal carrier and reservoir for antibiotic resistance genes and for the transfer of genetic elements to pathogenic bacteria. The increasingly growing rate of antibiotic resistance of

References

[1]  M. Otto, “Staphylococcus epidermidis—the “accidental” pathogen,” Nature Reviews Microbiology, vol. 7, no. 8, pp. 555–567, 2009.
[2]  C. von Eiff, G. Peters, and C. Heilmann, “Pathogenesis of infections due to coagulase-negative staphylococci,” The Lancet Infectious Diseases, vol. 2, no. 11, pp. 677–685, 2002.
[3]  P. Viale and S. Stefani, “Vascular catheter-associated infections: a microbiological and therapeutic update,” Journal of Chemotherapy, vol. 18, no. 3, pp. 235–249, 2006.
[4]  C. Vuong and M. Otto, “Staphylococcus epidermidis infections,” Microbes and Infection, vol. 4, no. 4, pp. 481–489, 2002.
[5]  J. R. Lentino, M. Narita, and V. L. Yu, “New antimicrobial agents as therapy for resistant gram-positive cocci,” European Journal of Clinical Microbiology and Infectious Diseases, vol. 27, no. 1, pp. 3–15, 2008.
[6]  D. J. Diekema, M. A. Pfaller, F. J. Schmitz et al., “Survey of infections due to Staphylococcus species: frequency of occurrence and antimicrobial susceptibility of isolates collected in the United States, Canada, Latin America, Europe, and the Western Pacific region for the SENTRY Antimicrobial Surveillance Program, 1997–1999,” Clinical Infectious Diseases, vol. 32, supplement 2, pp. S114–S132, 2001.
[7]  M. Miragaia, I. Couto, S. F. F. Pereira et al., “Molecular characterization of methicillin-resistant Staphylococcus epidermidis clones: evidence of geographic dissemination,” Journal of Clinical Microbiology, vol. 40, no. 2, pp. 430–438, 2002.
[8]  P. M. Guarrera, “Traditional phytotherapy in Central Italy (Marche, Abruzzo, and Latium),” Fitoterapia, vol. 76, no. 1, pp. 1–25, 2005.
[9]  I. Ahmad and F. Aqil, “In vitro efficacy of bioactive extracts of 15 medicinal plants against ESβL-producing multidrug-resistant enteric bacteria,” Microbiological Research, vol. 162, no. 3, pp. 264–275, 2007.
[10]  E. K. Barbour, M. Al Sharif, V. K. Sagherian, et al., “Screening of selected indigenous plants of Lebanon for antimicrobial activity,” Journal of Ethnopharmacology, vol. 93, no. 1, pp. 1–7, 2004.
[11]  M. W. Iwu, A. R. Duncan, and C. O. Okunji, “New antimicrobials of plant origin,” in Perspectives on New Crops and New Uses, J. Janick, Ed., pp. 457–462, AHSH Press, Alexandria, VA, USA, 1999.
[12]  T. Nitta, T. Arai, H. Takamatsu, et al., “Antibacterial activity of extracts prepared from tropical and subtropical plants on methicillin-resistant Staphylococcus aureus,” Journal of Health Science, vol. 48, no. 3, pp. 273–276, 2002.
[13]  S. Gibbons, “Anti-staphylococcal plant natural products,” Natural Product Reports, vol. 21, no. 2, pp. 263–277, 2004.
[14]  N. Sarac and A. Ugur, “Antimicrobial activities and usage in folkloric medicine of some Lamiaceae species growing in Mugla, Turkey,” EurAsian Journal of BioSciences, vol. 1, no. 4, pp. 28–34, 2007.
[15]  E. J. Tepe, M. A. Vincent, and L. E. Watson, “Phylogenetic patterns, evolutionary trends and the origin of ant-plant associations Piper section Macrostachys: Burger's hypotheses revisited,” in Piper: A Model Genus for Studies of Phytochemistry, Ecology, and Evolution, pp. 156–178, Kluwer Academic Publishers, 2004.
[16]  X. Su, A. B. Howell, and H. D'Souza, “Antibacterial effects of plant-derived extracts on methicillin-resistant Staphylococcus aureus,” Foodborne Pathogens and Disease, vol. 9, no. 6, pp. 573–578, 2012.
[17]  J. Parekh and S. V. Chanda, “Antibacterial activity of aqueous and alcoholic extracts of 34 Indian medicinal plants against some Staphylococcus species,” Turkish Journal of Biology, vol. 32, no. 1, pp. 63–71, 2008.
[18]  E. A. Palombo and S. J. Semple, “Antibacterial activity of traditional Australian medicinal plants,” Journal of Ethnopharmacology, vol. 77, no. 2-3, pp. 151–157, 2001.
[19]  European Pharmacopoeia, 3rd edition, Council of Europe, Strasbourg, France, pp. 1323–1324, Supplement 2001.
[20]  CLSI. Performance Standards for Antimicrobial Susceptibility Testing, Twenty-First Informational Supplement. CLSI document M100-S21. Clinical and Laboratory Standards Institute, Wayne, Pa, USA, 2011.
[21]  K. Zhang, J. A. McClure, S. Elsayed, T. Louie, and J. M. Conly, “Novel multiplex PCR assay for characterization and concomitant subtyping of staphylococcal cassette chromosome mec types I to V in methicillin-resistant Staphylococcus aureus,” Journal of Clinical Microbiology, vol. 43, no. 10, pp. 5026–5033, 2005.
[22]  S. K. Pillai, G. M. Eliopoulos, and R. C. Moellering, “Antimicrobial combination,” in Antibiotics in Laboratory Medicine, V. Lorian, Ed., pp. 365–409, Lippincott Williams & Wilkins, Philadelphia, Pa, USA, 2005.
[23]  J. Y. Lee, W. S. Oh, K. S. Ko, et al., “Synergy of arbekacin-based combinations against vancomycin hetero-intermediate Staphylococcus aureus,” Journal of Korean Medical Science, vol. 21, no. 2, pp. 188–192, 2006.
[24]  K. P. Devi, S. A. Nisha, R. Sakthivel, and S. K. Pandian, “Eugenol (an essential oil of clove) acts as an antibacterial agent against Salmonella typhi by disrupting the cellular membrane,” Journal of Ethnopharmacology, vol. 130, no. 1, pp. 107–115, 2010.
[25]  M. Paknejadi, F. Foroohi, and M. Yousefzadi, “Antimicrobial activities of the essential oils of five Salvia species from Tehran province, Iran,” Journal of Paramedical Sciences, vol. 3, no. 2, pp. 12–18, 2012.
[26]  A. P. Longaray Delamare, I. T. Moschen-Pistorello, L. Artico, L. Atti-Serafini, and S. Echeverrigaray, “Antibacterial activity of the essential oils of Salvia officinalis L. and Salvia triloba L. cultivated in South Brazil,” Food Chemistry, vol. 100, no. 2, pp. 603–608, 2007.
[27]  G. G. F. Nascimento, J. Locatelli, P. C. Freitas, and G. L. Silva, “Antibacterial activity of plant extracts and phytochemicals on antibiotic-resistant bacteria,” Brazilian Journal of Microbiology, vol. 31, no. 4, pp. 247–256, 2000.
[28]  S. A. Rovinsky and G. R. Cizadlo, “Salvia divinorum Eplig et Jativa-M. (Labiatae): an ethnopharmacological investigation,” The McNair Scholarly Review, vol. 3, pp. 142–156, 1998.
[29]  ?. Ku?ma, M. Rózalski, E. Walencka, B. Rózalska, and H. Wysokińska, “Antimicrobial activity of diterpenoids from hairy roots of Salvia sclarea L.: salvipisone as a potential anti-biofilm agent active against antibiotic resistant Staphylococci,” Phytomedicine, vol. 14, no. 1, pp. 31–35, 2007.
[30]  S. Maisnier-Patin, E. Forni, and J. Richard, “Purification, partial characterisation and mode of action of enterococcin EFS2, an antilisterial bacteriocin, produced by a strain of Enterococcus faecalis isolated from a cheese,” International Journal of Food Microbiology, vol. 30, no. 3, pp. 255–270, 1996.
[31]  K. Zhou, W. Zhou, P. Li, G. Liu, J. Zhang, and Y. Dai, “Mode of action of pentocin 31-1: an antilisteria bacteriocin produced by Lactobacillus pentosus from Chinese traditional ham,” Food Control, vol. 19, no. 8, pp. 817–822, 2008.
[32]  S. P. Denyer and W. B. Hugo, “Biocide-induced damage to the bacterial cytoplasmic membrane,” in Mechanisms of Action of Chemical Biocides: Their Study and Exploitation, S. P. Denyer and W. B. Hugo, Eds., pp. 171–187, Blackwell Scientific Publications, Oxford, UK, 1991.
[33]  D. Horne, M. Holm, C. Oberg, S. Chao, and D. G. Young, “Antimicrobial effects of essential oils on Streptococcus pneumoniae,” Journal of Essential Oil Research, vol. 13, no. 5, pp. 387–392, 2001.
[34]  R. E. Andrews, L. W. Parks, and K. D. Spence, “Some effects of Douglas fir terpenes on certain microorganisms,” Applied and Environmental Microbiology, vol. 40, no. 2, pp. 301–304, 1980.
[35]  G. O. Onawunmi and E. O. Ogunlana, “Effects of lemon grass oil on the cells and spheroplasts of Escherichia coli NCTC 9001,” Microbios Letters, vol. 28, no. 110, pp. 63–68, 1985.
[36]  C. F. Carson, B. J. Mee, and T. V. Riley, “Mechanism of action of Melaleuca alternifolia (tea tree) oil on Staphylococcus aureus determined by time-kill, lysis, leakage, and salt tolerance assays and electron microscopy,” Antimicrobial Agents and Chemotherapy, vol. 46, no. 6, pp. 1914–1920, 2002.
[37]  The European Committee on Antimicrobial Susceptibility Testing, Breakpoint tables for interpretation of MICs and zone diameters. Version 3.1, 2013.
[38]  F. Martineau, F. J. Picard, N. Lansac et al., “Correlation between the resistance genotype determined by multiplex PCR assays and the antibiotic susceptibility patterns of Staphylococcus aureus and Staphylococcus epidermidis,” Antimicrobial Agents and Chemotherapy, vol. 44, no. 2, pp. 231–238, 2000.
[39]  B. Strommenger, C. Kettlitz, G. Werner, and W. Witte, “Multiplex PCR assay for simultaneous detection of nine clinically relevant antibiotic resistance genes in Staphylococcus aureus,” Journal of Clinical Microbiology, vol. 41, no. 9, pp. 4089–4094, 2003.
[40]  T. Zmantar, K. Chaieb, F. Ben Abdallah et al., “Multiplex PCR detection of the antibiotic resistance genes in Staphylococcus aureus strains isolated from auricular infections,” Folia Microbiologica, vol. 53, no. 4, pp. 357–362, 2008.
[41]  K. Horiuchi, S. Shiota, T. Kuroda, T. Hatano, T. Yoshida, and T. Tsuchiya, “Potentiation of antimicrobial activity of aminoglycosides by carnosol from Salvia officinalis,” Biological and Pharmaceutical Bulletin, vol. 30, no. 2, pp. 287–290, 2007.
[42]  W. H. Zhao, Z. Q. Hu, Y. Hara, and T. Shimamura, “Inhibition of penicillinase by epigallocatechin gallate resulting in restoration of antibacterial activity of penicillin against penicillinase-producing Staphylococcus aureus,” Antimicrobial Agents and Chemotherapy, vol. 46, no. 7, pp. 2266–2268, 2002.
[43]  Z. Q. Hu, W. H. Zhao, N. Asano, et al., “Epigallocatechin gallate synergistically enhances the activity of carbapenems against methicillin-resistant Staphylococcus aureus,” Antimicrobial Agents and Chemotherapy, vol. 46, no. 2, pp. 558–560, 2002.
[44]  S. Shiota, M. Shimizu, T. Mizusima et al., “Restoration of effectiveness of β-lactams on methicillin-resistant Staphylococcus aureus by tellimagrandin I from rose red,” FEMS Microbiology Letters, vol. 185, no. 2, pp. 135–138, 2000.
[45]  M. Shimizu, S. Shiota, T. Mizushima et al., “Marked potentiation of activity of β-lactams against methicillin-resistant Staphylococcus aureus by corilagin,” Antimicrobial Agents and Chemotherapy, vol. 45, no. 11, pp. 3198–3201, 2001.
[46]  C. O. Esimone, I. R. Iroha, E. C. Ibezim, C. O. Okeh, and E. M. Okpana, “In vitro evaluation of the interaction between tea extracts and penicillin G against Staphylococcus aureus,” African Journal of Biotechnology, vol. 5, no. 11, pp. 1082–1086, 2006.
[47]  M. G. Pinho, H. Lencastre, and A. Tomasz, “An acquired and a native penicillin-binding protein cooperate in building the cell wall of drug-resistant staphylococci,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 19, pp. 10886–10891, 2001.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133