全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

GNSS Reliability Testing in Signal-Degraded Scenario

DOI: 10.1155/2013/870365

Full-Text   Cite this paper   Add to My Lib

Abstract:

Multiconstellation satellite navigation is critical in signal-degraded environments where signals are strongly corrupted. In this case, the use of a single GNSS system does not guarantee an accurate and continuous positioning. A possible approach to solve this problem is the use of multiconstellation receivers that provide additional measurements and allows robust reliability testing; in this work, a GPS/GLONASS combination is considered. In urban scenario, a modification of the classical RAIM technique is necessary taking into account frequent multiple blunders. The FDE schemes analysed are the “Observation Subset Testing,” “Forward-Backward Method,” and “Danish Method”; they are obtained by combining different basic statistical tests. The considered FDE methods are modified to optimize their behaviour in urban scenario. Specifically a preliminary check is implemented to screen out bad geometries. Moreover, a large blunder could cause multiple test failures; hence, a separability index is implemented to avoid the incorrect exclusion of blunder-free measurements. Testing the RAIM algorithms of GPS/GLONASS combination to verify the benefits relative to GPS only case is a main target of this work too. The performance of these methods is compared in terms of RMS and maximum error for the horizontal and vertical components of position and velocity. 1. Introduction GNSS (Global Navigation Satellite Systems) are worldwide, all-weather navigation systems able to provide three-dimensional position, velocity, and time synchronization to UTC (Coordinated Universal Time) scale [1, 2]. The GPS system is the main GNSS and it is fully operational since almost two decades; in good visibility conditions (“open sky” scenario), GPS can provide a position accuracy of few meters for absolute positioning up to millimetre order for postprocessed relative positioning [2]. Satellite navigation in difficult scenarios (e.g., urban canyons, and mountainous areas) is more critical, because many GNSS signals are blocked or strongly degraded by natural and artificial obstacles; in these scenarios GPS only cannot guarantee an accurate and continuous positioning due to the lack of measurements and/or the presence of erroneous measurements. A possible way to fill this gap is the use of a GNSS multiconstellation receiver, considering the combined use of GPS with other GNSS such as Galileo, Beidou, and GLONASS. The performance of the integrated system is increased in terms of(i)continuity, directly related to satellite availability,(ii)accuracy, enhanced by observation geometry

References

[1]  B. Hoffmann-Wellenhof, H. Lichtenegger, and J. Collins, Global Positioning System: Theory and Practice, Springer, New York, NY, USA, 1992.
[2]  E.D. Kaplan and J. Hegarty, “Fundamentals of satellite navigation,” in Understanding GPS: Principles and Applications, E. D. Kaplan, Ed., Artech House Mobile Communications Series, 2nd edition, 2006.
[3]  A. Angrisano, M. Petovello, and G. Pugliano, “GNSS/INS integration in vehicular urban navigation,” in Proceedings of the 23rd International Technical Meeting of the Satellite Division of the Institute of Navigation (GNSS '10), pp. 1505–1512, The Institute of Navigation, Portland, Ore, USA, September 2010.
[4]  A. Angrisano, M. Petovello, and G. Pugliano, “Benefits of combined GPS/GLONASS with low-cost MEMS IMUs for vehicular urban navigation,” Sensors, vol. 12, no. 4, pp. 5134–5158, 2012.
[5]  B. Parkinson and J. J. Spilker, Global Positioning System: Theory And Applications, vol. 1-2, American Institute of Aeronautics and Astronautics, Washington, DC, USA, 1996.
[6]  C. Cai, Precise point positioning using dual-frequency GPS and GLONASS measurements [M.S. thesis], UCGE Report no. 20291, Department of Geomatics Engineering, University of Calgary, Calgary, Canada, 2009.
[7]  A. Angrisano, GNSS/INS integration methods [Ph.D. thesis], “Parthenope” University of Naples, 2010.
[8]  C. Cai and Y. Gao, “A combined GPS/GLONASS navigation algorithm for use with limited satellite visibility,” Journal of Navigation, vol. 62, no. 4, pp. 671–685, 2009.
[9]  A. Angrisano, S. Gaglione, G. Pugliano, R. Robustelli, R. Santamaria, and M. Vultaggio, “A stochastic sigma model for GLONASS satellite pseudorange,” Applied Geomatics, vol. 3, no. 1, pp. 49–57, 2011.
[10]  ICD-GLONASS, Global Navigation Satellite System GLONASS Interface Control Document, version 5.1, Moscow, Russia, 2008.
[11]  SC-159 of the RTCA, Minimum Operational Performance Standards for Global Positioning System/Wide Area Augmentation System Airborne Equipment, Document DO-229D, RTCA, Washington, DC, USA, 2006.
[12]  E. M. Mikhail, Observations and Least Squares, Harper & Row, 1976.
[13]  D. E. Wells and E. J. Krakiwsky, The Methods of Least Squares, Lecture Notes no 18, Department of Surveying Engineering, University of Brunswick, 1971.
[14]  S. Hewitson and J. Wang, “GNSS receiver autonomous integrity monitoring (RAIM) performance analysis,” GPS Solutions, vol. 10, no. 3, pp. 155–170, 2006.
[15]  G. Y. Chin, J. H. Kraemer, and R. G. Brown, “GPS RAIM: screening out bad geometries under worst-case bias conditions,” Navigation, Journal of the Institute of Navigation, vol. 39, no. 4, pp. 407–427, 1992.
[16]  R. G. Brown and G. Y. Chin, “GPS RAIM: calculation of threshold and protection radius using chi-square methods-a geometric approach,” Global Positioning System: Institute of Navigation, vol. 5, pp. 155–179, 1997.
[17]  M. Petovello, Real-time integration of a tactical-grade IMU and GPS for high-accuracy positioning and navigation [Ph.D. thesis], UCGE Report no. 20173, Department of Geomatics Engineering, University of Calgary, Calgary, Canada, 2003.
[18]  W. Baarda, A Testing Procedure for Use in Geodetic Networks, Netherlands Geodetic Commission, Publication on Geodesy, New Series 2, 5, Delft, The Netherlands, 1968.
[19]  A. K. Brown, “Receiver autonomous integrity monitoring using a 24-satellite GPS constellation,” Navigation, Journal of The Institute of Navigation, vol. 5, pp. 21–33, 1998, Red Book of RAIM.
[20]  H. Kuusniemi, User-level reliability and quality monitoring in satellite-based personal navigation [Ph.D. thesis], Tampere University of Technology, Tampere, Finland, 2005.
[21]  H. Kuusniemi, A. Wieser, G. Lachapelle, and J. Takala, “User-level reliability monitoring in urban personal satellite-navigation,” IEEE Transactions on Aerospace and Electronic Systems, vol. 43, no. 4, pp. 1305–1318, 2007.
[22]  A. Angrisano, S. Gaglione, and C. Gioia, “RAIM algorithms for aided GNSS in urban scenario,” in Proceedings of the Ubiquitous Positioning Indoor Navigation and Location Based Service, Helsinki, Finland, October 2012.
[23]  A. Leick, GPS Satellite Surveying, John Wiley & Sons, Hoboken, NJ, USA, 3rd edition, 2004.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133