We present an analysis of internal solitary waves (ISWs) on the SE Brazilian continental shelf using a set of Envisat/ASAR satellite images. For the 17-month observation period, 467 ISW packets were detected. Most of observed solitons were associated to 4–6? wind. The number of ISW packets shows a seasonal signal with a peak in summer, with higher concentration in the outer shelf in all seasons, followed by midshelf during the summer. Propagation direction of ISWs was predominantly onshore with packets separated by typical internal tide wavelengths (~10–40?km). The highest values of the barotropic tidal forcing F are concentrated at the shelf break between 200 and 500?m isobaths. These characteristics suggest that ISWs are formed from nonlinear disintegration of internal tides generated at the shelf break that propagate shoreward as interfacial internal waves. No significant change in the number of ISWs from spring to neap tides was observed in spite of significant tidal current variation (60%). Even not being a region of strong tides, this study shows that ISWs are a frequent and widespread feature, possibly playing a significant dynamic role, affecting biological production, sediment dispersion, and transport. 1. Introduction Since the launch of SEASAT in 1978, numerous studies of oceanic internal solitary waves (ISWs) have been made using synthetic aperture radar (SAR) images. The availability of a great number of SAR satellite images has shown that ISWs are an ubiquitous oceanic phenomenon. They are frequently observed wherever tidal currents and stratification occur near significant seafloor topographic features, such as shelf break zones, plateaus, or sills [1]. Although a large number of remote sensing studies of ISWs have used SAR images, these features can also be observed in ocean color imagery [2] and in Sun glitter regions of visible images [3]. ISWs normally appear in SAR images as packets of 2–8 dark and bright stripes, with subsequent packets separated by distances corresponding to the wavelength of the internal tides (Figure 1) [1, 4]. Figure 1: Example of two ISWs packets generated at consecutive tidal cycles observed on the Brazilian southeast coast. Image acquisition date: February 3, 2010; geographic position is indicated at insert box in Figure 2. At typical microwave frequencies used in SAR systems (1–10?GHz), the penetration depth of radar pulses in sea water, which is dependent on the complex permittivity, is restricted to less than about one centimeter [5]. Although practically a surface phenomenon, the backscattering of SAR
References
[1]
J. R. Apel and F. I. Gonzalez, “Nonlinear features of internal waves off Baja California as observed from the Seasat imaging radar,” Journal of Geophysical Research, vol. 88, no. 7, pp. 4459–4466, 1983.
[2]
J. C. B. da Silva, A. L. New, M. A. Srokosz, and T. J. Smyth, “On the observability of internal tidal waves in remotely-sensed ocean colour data,” Geophysical Research Letters, vol. 29, no. 12, pp. 1–10, 2002.
[3]
C. R. Jackson, “Internal wave detection using Moderate Resolution Imaging Spectroradiometer (MODIS),” Journal of Geophysical Research, vol. 112, no. C11012, 2007.
[4]
J. C. B. da Silva, A. L. New, and A. Azevedo, “On the role of SAR for observing "local generation" of internal solitary waves off the Iberian Peninsula,” Canadian Journal of Remote Sensing, vol. 33, no. 5, pp. 388–403, 2007.
[5]
F. T. Ulaby, R. K. Moore, and A. K. Fung, Microwave Remote Sensing: Active and Passive, vol. 3, Artech House, Norwood, Mass, USA, 1986.
[6]
W. Alpers, “Theory of radar imaging of internal waves,” Nature, vol. 314, no. 6008, pp. 245–247, 1985.
[7]
J. C. B. da Silva, S. A. Ermakov, I. S. Robinson, D. R. G. Jeans, and S. V. Kijashko, “Role of surface films in ERS SAR signatures of internal waves on the shelf 1. Short-period internal waves,” Journal of Geophysical Research C, vol. 103, no. 4, pp. 8009–8031, 1998.
[8]
J. C. B. da Silva, S. A. Ermakov, and I. S. Robinson, “Role of surface films in ERS SAR signatures of internal waves on the shelf 3. Mode transitions,” Journal of Geophysical Research C, vol. 105, no. 10, pp. 24089–24104, 2000.
[9]
V. Kudryavtsev, D. Akimov, J. Johannessen, and B. Chapron, “On radar imaging of current features: 1. Model and comparison with observations,” Journal of Geophysical Research C, vol. 110, no. 7, pp. 1–27, 2005.
[10]
M. A. Evans, S. MacIntyre, and G. W. Kling, “Internal wave effects on photosynthesis: experiments, theory, and modeling,” Limnology and Oceanography, vol. 53, no. 1, pp. 339–353, 2008.
[11]
R. D. Pingree and G. T. Mardell, “Slope turbulence, internal waves and phytoplankton growth at the Celtic Sea shelf-break,” Philosophical Transactions of the Royal Society of London A, vol. 302, pp. 663–682, 1981.
[12]
H. Sandstrom and J. A. Elliott, “Internal tide and solitons on the Scotian Shelf: a nutrient pump at work,” Journal of Geophysical Research, vol. 89, no. 4, pp. 6415–6426, 1984.
[13]
P. M. Holligan, R. D. Pingree, and G. T. Mardell, “Oceanic solitons, nutrient pulses and phytoplankton growth,” Nature, vol. 314, no. 6009, pp. 348–350, 1985.
[14]
J. N. Moum, D. M. Farmer, W. D. Smyth, L. Armi, and S. Vagle, “Structure and generation of turbulence at interfaces strained by internal solitary waves propagating shoreward over the continental shelf,” Journal of Physical Oceanography, vol. 33, no. 10, pp. 2093–2112, 2003.
[15]
D. Bogucki, T. Dickey, and L. G. Redekopp, “Sediment resuspension and mixing by resonantly generated internal solitary waves,” Journal of Physical Oceanography, vol. 27, no. 7, pp. 1181–1196, 1997.
[16]
L. S. Quaresma, J. Vitorino, A. Oliveira, and J. da Silva, “Evidence of sediment resuspension by nonlinear internal waves on the western Portuguese mid-shelf,” Marine Geology, vol. 246, no. 2-4, pp. 123–143, 2007.
[17]
A. D. Heathershaw, “Some observations of internal wave current fluctuations at the shelf-edge and their implications for sediment transport,” Continental Shelf Research, vol. 4, no. 4, pp. 485–493, 1985.
[18]
J. Zhou and X. Zhang, “Resonant interaction of sound wave with internal solitons in the coastal zone,” Journal of the Acoustical Society of America, vol. 90, no. 4 I, pp. 2042–2054, 1991.
[19]
J. R. Apel, J. R. Holbrook, A. K. Liu, and J. J. Tsai, “The Sulu sea internal soliton experiment,” Journal of Physical Oceanography, vol. 15, no. 12, pp. 1625–1651, 1985.
[20]
A. L. New and R. D. Pingree, “An intercomparison of internal solitary waves in the Bay of Biscay and resulting from Korteweg-de Vries-type theory,” Progress in Oceanography, vol. 45, no. 1, pp. 1–38, 2000.
[21]
C. R. Jackson, J. C. B. da Silva, and G. Jeans, “The generation of nonlinear internal waves,” Oceanography, vol. 25, no. 2, pp. 108–123, 2012.
[22]
T. Gerkema, “A unified model for the generation and fission of internal tides in a rotating ocean,” Journal of Marine Research, vol. 54, no. 3, pp. 421–450, 1996.
[23]
A. L. New and R. D. Pingree, “Large-amplitude internal soliton packets in the central Bay of Biscay,” Deep Sea Research Part A, vol. 37, no. 3, pp. 513–524, 1990.
[24]
A. L. New and R. D. Pingree, “Local generation of internal soliton packets in the central bay of Biscay,” Deep Sea Research Part A, vol. 39, no. 9, pp. 1521–1534, 1992.
[25]
T. Gerkema, “Internal and interfacial tides: beam scattering and local generation of solitary waves,” Journal of Marine Research, vol. 59, no. 2, pp. 227–255, 2001.
[26]
A. F. Pereira and B. M. Castro, “Internal tides in the southwestern Atlantic off Brazil: observations and numerical modeling,” Journal of Physical Oceanography, vol. 37, no. 6, pp. 1512–1526, 2007.
[27]
A. F. Pereira, B. M. Castro, L. Calado, and I. C. A. da Silveira, “Numerical simulation of M2 internal tides in the South Brazil Bight and their interaction with the Brazil Current,” Journal of Geophysical Research C, vol. 112, no. 4, Article ID C04009, 2007.
[28]
C. R. Jackson, An Atlas of Internal Solitary-Like Waves and Their Properties, Alexandria, Va, USA, 2nd edition, 2004.
[29]
B. M. Castro Filho and L. B. Miranda, “Physical oceanography of the Western Atlantic Continental Shelf located between 4°N and 34°S coastal segment,” in The Sea, K. H. Robinson and K. H. Brink, Eds., vol. 11, pp. 209–251, Wiley, Berlin, Germany, 1998.
[30]
B. M. Castro, J. A. Lorenzzetti, I. C. A. Silveira, and L. B. Miranda, “Thermohaline structure and circulation in the region between Cape Sao Tomé and Chui,” in The Oceanographic Environment of the contInental Shelf and Slope in the Southeast-South Region off Brazil, C. L. Rossi-Wongtschowski and L. S.-P. Madureira, Eds., pp. 11–120, EDUSP, S?o Paulo, Brazil, 2006.
[31]
S. R. Signorini, “On the circulation and the volume transport of the Brazil Current between the Cape of S?o Tomé and Guanabara Bay,” Deep-Sea Research, vol. 25, no. 5, pp. 481–490, 1978.
[32]
E. J. D. Campos, Y. Ikeda, B. M. Castro, S. A. Gaeta, J. A. Lorenzzetti, and M. R. Stevenson, “Experiment studies circulation in the Western south atlantic,” Eos, vol. 77, no. 27, pp. 253–259, 1996.
[33]
A. R. Piola, O. O. M?ller Jr., R. A. Guerrero, and E. J. D. Campos, “Variability of the subtropical shelf front off eastern South America: winter 2003 and summer 2004,” Continental Shelf Research, vol. 28, no. 13, pp. 1639–1648, 2008.
[34]
A. R. de Mesquita and J. Harari, “On the harmonic constants of tides and tidal currents of the South-eastern brazilian shelf,” Continental Shelf Research, vol. 23, no. 11–13, pp. 1227–1237, 2003.
G. D. Egbert and S. Y. Erofeeva, “Efficient inverse modeling of barotropic ocean tides,” Journal of Atmospheric and Oceanic Technology, vol. 19, no. 2, pp. 183–204, 2002.
[39]
National Oceanographic Data Centre, 2012, http://www.nodc.noaa.gov/OC5/WOA09/pr_woa09.html.
[40]
P. G. Baines, “On internal tide generation models,” Deep Sea Research Part A, vol. 29, no. 3, pp. 307–338, 1982.
[41]
S. T. Dokken, R. Olsen, T. Wahl, and M. V. Tantillo, “Identification and characterization of internal waves in SAR images along the coast of Norway,” Geophysical Research Letters, vol. 28, no. 14, pp. 2803–2806, 2001.
[42]
M. A. Donelan and W. J. Pierson Jr., “Radar scattering and equilibrium ranges in wind-generated waves with application to scatterometry,” Journal of Geophysical Research, vol. 92, no. 5, pp. 4971–5029, 1987.
[43]
P. Brandt, R. Romeiser, and A. Rubino, “On the determination of characteristics of the interior ocean dynamics from radar signatures of internal solitary waves,” Journal of Geophysical Research C, vol. 104, no. 12, pp. 30039–30045, 1999.
[44]
Y. Ouyang, J. Chong, Y. Wu, and M. Zhu, “Simulation studies of internal waves in SAR images under different SAR and wind field conditions,” IEEE Transactions on Geoscience and Remote Sensing, vol. 49, no. 5, pp. 1734–1743, 2011.
[45]
C. G. Justus, W. R. Hargraves, A. Mikhail, and D. Graber, “Methods for estimating wind speed frequency distributions,” Journal of Applied Meteorology, vol. 17, no. 3, pp. 350–353, 1978.
[46]
W. Huang, J. Johannessen, W. Alpers, J. Yang, and X. Gan, “Spatial and temporal variations of internal wave sea surface signatures in the northern south China sea studied by spaceborne SAR imagery,” in Proceedings of the 2nd SeaSAR Symposium, Frascati, Italy, January 2008.
[47]
J. L. Stech and J. A. Lorenzzetti, “The response of the south Brazil bight to the passage of wintertime cold fronts,” Journal of Geophysical Research, vol. 97, no. 6, pp. 9507–9520, 1992.
[48]
S. M. Kelly and J. D. Nash, “Internal-tide generation and destruction by shoaling internal tides,” Geophysical Research Letters, vol. 37, no. 23, Article ID L23611, 2010.
[49]
D. R. G. Jeans and T. J. Sherwin, “The evolution and energetics of large amplitude nonlinear internal waves on the Portuguese shelf,” Journal of Marine Research, vol. 59, no. 3, pp. 327–353, 2001.
[50]
T. J. Sherwin, V. I. Vlasenko, N. Stashchuk, D. R. G. Jeans, and B. Jones, “Along-slope generation as an explanation for some unusually large internal tides,” Deep-Sea Research Part I, vol. 49, no. 10, pp. 1787–1799, 2002.
[51]
O. O. M?ller Jr., A. R. Piola, A. C. Freitas, and E. J. D. Campos, “The effects of river discharge and seasonal winds on the shelf off southeastern South America,” Continental Shelf Research, vol. 28, no. 13, pp. 1607–1624, 2008.
[52]
S. V. Babu and A. D. Rao, “Mixing in the surface layers in association with internal waves during winter in the northwestern Bay of Bengal,” Natural Hazards, vol. 57, no. 3, pp. 551–562, 2011.
[53]
M. A. Merrifield and P. E. Holloway, “Model estimates of M2 internal tide energetics at the Hawaiian Ridge,” Journal of Geophysical Research C, vol. 107, no. 8, pp. 5–1, 2002.
[54]
A. Azevedo, S. Correia, J. C. B. da Silva, and A. L. New, “Hot-spots of internal wave activity off iberia revealed by multisensor remote sensing satellite observations—spotiwave,” in Proceedings of the 2nd Workshop on Coastal and Marine Applications of SAR, pp. 125–132, Svalbard, Norway, September 2003.
[55]
A. Azevedo, J. C. B. da Silva, and A. L. New, “On the generation and propagation of internal solitary waves in the southern Bay of Biscay,” Deep-Sea Research Part I, vol. 53, no. 6, pp. 927–941, 2006.
[56]
J. C. B. da Silva, A. L. New, and J. M. Magalhaes, “Internal solitary waves in the Mozambique Channel: observations and interpretation,” Journal of Geophysical Research-Oceans, vol. 114, no. C05001, 12 pages, 2009.
[57]
J. A. Lorenzzetti, J. L. Stech, W. L. Mello Filho, and A. T. Assireu, “Satellite observation of Brazil Current inshore thermal front in the SW South Atlantic: space/time variability and sea surface temperatures,” Continental Shelf Research, vol. 29, no. 17, pp. 2061–2068, 2009.
[58]
T. Gerkema and J. T. F. Zimmerman, “Generation of nonlinear internal tides and solitary waves,” Journal of Physical Oceanography, vol. 25, pp. 1081–1094, 1995.
[59]
J. Pedlosky, Waves in the Ocean and Atmosphere. Introduction to Wave Dynamics, Springer, Berlin, Germany, 2003.
[60]
L. L. Fu and B. Holt, “Internal waves in the Gulf of California: observations from a spaceborne radar,” Journal of Geophysical Research, vol. 89, no. 2, pp. 2053–2060, 1984.
[61]
J. Small, Z. Hallock, G. Pavey, and J. Scott, “Observations of large amplitude internal waves at the Malin Shelf edge during SESAME 1995,” Continental Shelf Research, vol. 19, no. 11, pp. 1389–1436, 1999.
[62]
M. Teixeira, A. Warn-Varnas, J. Apel, and J. Hawkins, “Analytical and observational studies of internal solitary waves in the Yellow Sea,” Journal of Coastal Research, vol. 22, no. 6, pp. 1403–1416, 2006.
[63]
J. R. Apel, “Oceanic internal waves and solitons,” in Synthetic Aperture Radar Marine User's Manual, C. R. Jackson and J. R. Apel, Eds., pp. 189–207, National Oceanic and Atmospheric Administration, Silver Spring, Md, USA, 2004.
[64]
A. K. Liu, Y. Steve Chang, M. K. Hsu, and N. K. Liang, “Evolution of nonlinear internal waves in the East and South China Seas,” Journal of Geophysical Research C, vol. 103, no. 3334, pp. 7995–8008, 1998.
[65]
J. C. B. da Silva, A. L. New, and J. M. Magalhaes, “On the structure and propagation of internal solitary waves generated at the Mascarene Plateau in the Indian Ocean,” Deep-Sea Research Part I, vol. 58, no. 3, pp. 229–240, 2011.
[66]
A. R. Osborne and T. L. Burch, “Internal solitons in the Andaman Sea,” Science, vol. 208, no. 4443, pp. 451–460, 1980.