全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Doxapram Use for Apnoea of Prematurity in Neonatal Intensive Care

DOI: 10.1155/2013/251047

Full-Text   Cite this paper   Add to My Lib

Abstract:

Apnoea of prematurity is treated with noninvasive respiratory therapy and methylxanthines. For therapy unresponsive apnoea doxapram is often prescibed in preterm neonates. The duration, dosage and route of administration of doxapram together with its efficacy was evaluated in two Dutch neonatal intensive care. Outcome concerning short-term safety and neonatal morbidity were evaluated. During 5 years, 122 of 1,501 admitted newborns <32 weeks of gestational age received doxapram. 64.8% of patients did not need intubation after doxapram. 25% of treated neonates were <27 weeks of gestation. A positive response to doxapram therapy on apnoea was associated with longer duration of doxapram usage ( ), lower mean doses ( ), and less days of intensive care (median 33 versus 42 days; ). No patients died during doxapram therapy. Incidence of necrotizing enterocolitis, intraventricular hemorrhage, periventricular leukomalacia, retinopathy of prematurity, persistent ductus arteriosus, or worsening of pulmonary condition did not increase during doxapram therapy. Doxapram is frequently used for apnoea of prematurity, despite a lack of data on short-term efficacy and long-term safety. Until efficacy and safety are confirmed in prospective trials, doxapram should be used with caution. 1. Introduction Recent advances in obstetrical and neonatal intensive care management have increased the survival rates of very low birth weight infants. In these infants, artificial ventilation is related to potential iatrogenic lung damage and therefore reduced to a minimum[1]. The introduction of new strategies of surfactant therapy includes a very short period of mechanical ventilation (InSurE) [2] or even avoidance of endotracheal intubation [3] in newborns with respiratory distress syndrome. As a consequence, noninvasive respiratory therapy has become increasingly important and is used in even the youngest neonates. In these infants, apnoea has emerged as a major clinical problem, manifested by an unstable respiratory rhythm reflecting the immaturity of the respiratory control systems. Apnoea appears to be harmful to the brain when associated with significant hypoxemia [4]. Methylxanthines, such as theophylline and caffeine, are the mainstay pharmacological treatment for apnoea and have proven to reduce chronic lung disease and long-term outcome [5, 6]. In line with current international consensus in the 2 reporting NICUs, caffeine base is given with a loading dose of 10?mg/kg and a maintenance dose of 5?mg/kg/day. Although Steer et al. and Gray et al. published very reassuring data

References

[1]  J. P. Kinsella, A. Greenough, and S. H. Abman, “Bronchopulmonary dysplasia,” The Lancet, vol. 367, no. 9520, pp. 1421–1431, 2006.
[2]  W. A. Engle, A. R. Stark, D. H. Adamkin et al., “Surfactant-replacement therapy for respiratory distress in the preterm and term neonate,” Pediatrics, vol. 121, no. 2, pp. 419–432, 2008.
[3]  A. Kribs, C. H?rtel, E. Kattner et al., “Surfactant without intubation in preterm infants with respiratory distress: first multi-center data,” Klinische Padiatrie, vol. 222, no. 1, pp. 13–17, 2010.
[4]  F. Pillekamp, C. Hermann, T. Keller, A. von Gontard, A. Kribs, and B. Roth, “Factors influencing apnea and bradycardia of prematurity—implications for neurodevelopment,” Neonatology, vol. 91, no. 3, pp. 155–161, 2007.
[5]  B. Schmidt, R. S. Roberts, P. Davis et al., “Long-term effects of caffeine therapy for apnea of prematurity,” The New England Journal of Medicine, vol. 357, no. 19, pp. 1893–1902, 2007.
[6]  B. Schmidt, P. J. Anderson, L. W. Doyle et al., “Survival without disability to age 5 years after neonatal caffeine therapy for apnea of prematurity,” Journal of the American Medical Association, vol. 307, no. 3, pp. 275–282, 2012.
[7]  P. Steer, V. Flenady, A. Shearman et al., “High dose caffeine citrate for extubation of preterm infants: a randomised controlled trial,” Archives of Disease in Childhood, vol. 89, no. 6, pp. F499–F503, 2004.
[8]  P. H. Gray, V. J. Flenady, B. G. Charles, and P. A. Steer, “Caffeine citrate for very preterm infants: effects on development, temperament and behaviour,” Journal of Paediatrics and Child Health, vol. 47, no. 4, pp. 167–172, 2011.
[9]  P. K. Gupta, J. Moore, M. A. Lewis, and J. W. Dundee, “Clinical trial of doxapram hydrochloride in the resuscitation of the newborn,” British Journal of Anaesthesia, vol. 44, no. 6, p. 626, 1972.
[10]  E. S. Siker, K. Mustafa, and B. Wolfson, “The analeptic effects of doxapram hydrochloride on thiopentone induced depression,” British Journal of Anaesthesia, vol. 36, no. 4, pp. 216–223, 1964.
[11]  C. S. Yost, “A new look at the respiratory stimulant doxapram,” CNS Drug Reviews, vol. 12, no. 3-4, pp. 236–249, 2006.
[12]  G. Alpan, F. Eyal, and E. Sagi, “Doxapram in the treatment of idiopathic apnea of prematurity unresponsive to aminophylline,” Journal of Pediatrics, vol. 104, no. 4, pp. 634–637, 1984.
[13]  E. Sagi, F. Eyal, and G. Alpan, “Idiopathic apnoea of prematurity treated with doxapram and aminophylline,” Archives of Disease in Childhood, vol. 59, no. 3, pp. 281–283, 1984.
[14]  K. J. Barrington, N. N. Finer, and G. Torok-Both, “Dose-response relationship of doxapram in the therapy for refractory idiopathic apnea of prematurity,” Pediatrics, vol. 80, no. 1, pp. 22–27, 1987.
[15]  F. Hayakawa, S. Hakamada, K. Kuno, T. Nakashima, and Y. Miyachi, “Doxapram in the treatment of idiopathic apnea of prematurity: desirable dosage and serum concentrations,” Journal of Pediatrics, vol. 109, no. 1, pp. 138–140, 1986.
[16]  A. Bairam, L. Akramoff-Gershan, K. Beharry, N. Laudignon, A. Papageorgiou, and J. V. Aranda, “Gastrointestinal absorption of doxapram in neonates,” American Journal of Perinatology, vol. 8, no. 2, pp. 110–113, 1991.
[17]  F. Eyal, G. Alpan, E. Sagi et al., “Aminophylline versus doxapram in idiopathic apnea of prematurity: a double-blind controlled study,” Pediatrics, vol. 75, no. 4, pp. 709–713, 1985.
[18]  C. Huon, E. Rey, P. Mussat, S. Parat, and G. Moriette, “Low-dose doxapram for treatment of apnoea following early weaning in very low birthweight infants: a randomized, double-blind study,” Acta Paediatrica, vol. 87, no. 11, pp. 1180–1184, 1998.
[19]  A. Peliowski and N. N. Finer, “A blinded, randomized, placebo-controlled trial to compare theophylline and doxapram for the treatment of apnea of prematurity,” Journal of Pediatrics, vol. 116, no. 4, pp. 648–653, 1990.
[20]  C. Dani, G. Bertini, M. Pezzati et al., “Brain hemodynamic effects of doxapram in preterm infants,” Biology of the Neonate, vol. 89, no. 2, pp. 69–74, 2006.
[21]  A. Lando, A. Klamer, F. Jonsbo, J. Weiss, and G. Greisen, “Doxapram and developmental delay at 12 months in children born extremely preterm,” Acta Paediatrica, vol. 94, no. 11, pp. 1680–1681, 2005.
[22]  C. Sreenan, P. C. Etches, N. Demianczuk, and C. M. T. Robertson, “Isolated mental developmental delay in very low birth weight infants: association with prolonged doxapram therapy for apnea,” Journal of Pediatrics, vol. 139, no. 6, pp. 832–837, 2001.
[23]  D. J. Henderson-Smart and P. G. Davis, “Prophylactic doxapram for the prevention of morbidity and mortality in preterm infants undergoing endotracheal extubation,” Cochrane Database of Systematic Reviews, no. 3, Article ID CD001966, 2000.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133