全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Pharmacogenomics in Children: Advantages and Challenges of Next Generation Sequencing Applications

DOI: 10.1155/2013/136524

Full-Text   Cite this paper   Add to My Lib

Abstract:

Pharmacogenetics is considered as a prime example of how personalized medicine nowadays can be put into practice. However, genotyping to guide pharmacological treatment is relatively uncommon in the routine clinical practice. Several reasons can be found why the application of pharmacogenetics is less than initially anticipated, which include the contradictory results obtained for certain variants and the lack of guidelines for clinical implementation. However, more reproducible results are being generated, and efforts have been made to establish working groups focussing on evidence-based clinical guidelines. For another pharmacogenetic hurdle, the speed by which a pharmacogenetic profile for a certain drug can be obtained in an individual patient, there has been a revolution in molecular genetics through the introduction of next generation sequencing (NGS), making it possible to sequence a large number of genes up to the complete genome in a single reaction. Besides the enthusiasm due to the tremendous increase of our sequencing capacities, several considerations need to be made regarding quality and interpretation of the sequence data as well as ethical aspects of this technology. This paper will focus on the different NGS applications that may be useful for pharmacogenomics in children and the challenges that they bring on. 1. Introduction Pharmacogenetics refers to the influence of DNA variants on drug response, the knowledge of which can facilitate selection of the optimal drug, dose, and treatment duration and avert adverse drug reactions [1]. Several demonstrations have been given on the differences in response to drugs between children and adults [2]. These include differences in drug metabolism and gene expression, the latter being a highly dynamic process functioning from the neonatal period over childhood into adult life. Though the number of studies specifically devoted to the pediatric population is still limited compared to adults, an increasing number of genes are being identified in which variants have an influence on pharmacological treatment of childhood diseases [3]. The identification of variants in novel genes as well as the validation of their functional effects will further increase our ability to predict drug treatment response in children; at the same time, the clinical implementation of this knowledge will demand an efficient diagnostic approach to first identify a pharmacogenomic profile in an individual patient in a short period of time, next to evidence-based clinical guidelines to facilitate decision making based on the

References

[1]  U. Amstutz and B. C. Carleton, “Pharmacogenetic testing: time for clinical practice guidelines,” Clinical Pharmacology and Therapeutics, vol. 89, no. 6, pp. 924–927, 2011.
[2]  K. A. Neville, M. L. Becker, J. L. Goldman, and G. L. Kearns, “Developmental pharmacogenomics,” Paediatric Anaesthesia, vol. 21, no. 3, pp. 255–265, 2011.
[3]  R. Russo, M. Capasso, P. Paolucci, and A. Iolascon, “Pediatric pharmacogenetic and pharmacogenomic studies: the current state and future perspectives,” European Journal of Clinical Pharmacology, vol. 67, no. 1, supplement, pp. S17–S27, 2011.
[4]  N. K. Zgheib, T. Arawi, R. A. Mahfouz, and R. Sabra, “Attitudes of health care professionals toward pharmacogenetic testing,” Molecular Diagnosis and Therapy, vol. 15, no. 2, pp. 115–122, 2011.
[5]  F. Sanger, S. Nicklen, and A. R. Coulson, “DNA sequencing with chain-terminating inhibitors,” Proceedings of the National Academy of Sciences of the United States of America, vol. 74, no. 12, pp. 5463–5467, 1977.
[6]  T. Tucker, M. Marra, and J. M. Friedman, “Massively parallel sequencing: the next big thing in genetic medicine,” American Journal of Human Genetics, vol. 85, no. 2, pp. 142–154, 2009.
[7]  A. Desai and A. Jere, “Next-generation sequencing: ready for the clinics?” Clinical Genetics, vol. 81, no. 6, pp. 503–510, 2012.
[8]  E. A. Ashley, A. J. Butte, M. T. Wheeler, et al., “Clinical assessment incorporating a personal genome,” The Lancet, vol. 375, no. 9725, pp. 1525–1535, 2010.
[9]  X. Lin, W. Tang, S. Ahmad, et al., “Applications of targeted gene capture and next-generation sequencing technologies in studies of human deafness and other genetic disabilities,” Hearing Research, vol. 288, no. 1-2, pp. 67–76, 2012.
[10]  C. Gilissen, A. Hoischen, H. G. Brunner, and J. A. Veltman, “Disease gene identification strategies for exome sequencing,” European Journal of Human Genetics, vol. 20, no. 5, pp. 490–497, 2012.
[11]  L. Sastre, “New DNA sequencing technologies open a promising era for cancer research and treatment,” Clinical and Translational Oncology, vol. 13, no. 5, pp. 301–306, 2011.
[12]  C. Gonzaga-Jauregui, J. R. Lupski, and R. A. Gibbs, “Human genome sequencing in health and disease,” Annual Review of Medicine, vol. 63, no. 1, pp. 35–61, 2012.
[13]  H. Varmus, “Ten years on—the human genome and medicine,” The New England Journal of Medicine, vol. 362, no. 21, pp. 2028–2029, 2010.
[14]  R. Hoppe, H. Brauch, D. L. Kroetz, and M. Esteller, “Exploiting the complexity of the genome and transcriptome using pharmacogenomics towards personalized medicine,” Genome Biology, vol. 12, no. 1, article 301, 2011.
[15]  Y. He, J. M. Hoskins, and H. L. McLeod, “Copy number variants in pharmacogenetic genes,” Trends in Molecular Medicine, vol. 17, no. 5, pp. 244–251, 2011.
[16]  S. Ghosh, F. Krux, V. Binder, M. Gombert, T. Niehues, O. Feyen, et al., “Array-based sequence capture and next-generation sequencing for the identification of primary immunodeficiencies,” Scandinavian Journal of Immunology, vol. 75, no. 3, pp. 350–354, 2012.
[17]  M. Nelen and J. A. Veltman, “Genome and exome sequencing in the clinic: unbiased genomic approaches with a high diagnostic yield,” Pharmacogenomics, vol. 13, no. 5, pp. 511–514, 2012.
[18]  M. Margulies, M. Egholm, W. E. Altman et al., “Genome sequencing in microfabricated high-density picolitre reactors,” Nature, vol. 437, no. 7057, pp. 376–380, 2005.
[19]  I. S. Kohane, “(Mis)treating the pharmacogenetic incidentalome,” Nature Reviews Drug Discovery, vol. 11, no. 2, pp. 89–90, 2012.
[20]  E. R. Gamazon, A. D. Skol, and M. A. Perera, “The limits of genome-wide methods for pharmacogenomic testing,” Pharmacogenet Genomics, vol. 22, no. 4, pp. 261–272, 2012.
[21]  T. J. Albert, M. N. Molla, D. M. Muzny et al., “Direct selection of human genomic loci by microarray hybridization,” Nature Methods, vol. 4, no. 11, pp. 903–905, 2007.
[22]  J. Li, S. Wang, J. Barone, and B. Malone, “Warfarin pharmacogenomics,” P and T, vol. 34, no. 8, pp. 422–427, 2009.
[23]  R. Kimura, K. Miyashita, Y. Kokubo et al., “Genotypes of vitamin K epoxide reductase, γ-glutamyl carboxylase, and cytochrome P450 2C9 as determinants of daily warfarin dose in Japanese patients,” Thrombosis Research, vol. 120, no. 2, pp. 181–186, 2007.
[24]  J. F. Carlquist, B. D. Horne, J. B. Muhlestein et al., “Genotypes of the cytochrome p450 isoform, CYP2C9, and the vitamin K epoxide reductase complex subunit 1 conjointly determine stable warfarin dose: a prospective study,” Journal of Thrombosis and Thrombolysis, vol. 22, no. 3, pp. 191–197, 2006.
[25]  D. W. Stafford, “The vitamin K cycle,” Journal of Thrombosis and Haemostasis, vol. 3, no. 8, pp. 1873–1878, 2005.
[26]  F. Takeuchi, R. McGinnis, S. Bourgeois et al., “A genome-wide association study confirms VKORC1, CYP2C9, and CYP4F2 as principal genetic determinants of warfarin dose,” PLoS Genetics, vol. 5, no. 3, Article ID e1000433, 2009.
[27]  S. T. Weiss, “New approaches to personalized medicine for asthma: where are we?” Journal of Allergy and Clinical Immunology, vol. 129, no. 2, pp. 327–334, 2012.
[28]  T. E. Froehlich, J. J. McGough, and M. A. Stein, “Progress and promise of attention-deficit hyperactivity disorder pharmacogenetics,” CNS Drugs, vol. 24, no. 2, pp. 99–117, 2010.
[29]  C. Kieling, J. P. Genro, M. H. Hutz, and L. A. Rohde, “A current update on ADHD pharmacogenomics,” Pharmacogenomics, vol. 11, no. 3, pp. 407–419, 2010.
[30]  N. Kondo, E. Matsui, A. Nishimura, and H. Kaneko, “Pharmacogenetics of asthma in children,” Allergy, Asthma and Immunology Research, vol. 2, no. 1, pp. 14–19, 2010.
[31]  L. Wang, H. L. McLeod, and R. M. Weinshilboum, “Genomics and drug response,” The New England Journal of Medicine, vol. 364, no. 12, pp. 1144–1153, 2011.
[32]  M. N. Bainbridge, W. Wiszniewski, D. R. Murdock, J. Friedman, C. Gonzaga-Jauregui, I. Newsham, et al., “Whole-genome sequencing for optimized patient management,” Science Translational Medicine, vol. 3, no. 87, Article ID 87re3, 2011.
[33]  J. S. Leeder, J. Lantos, and S. P. Spielberg, “Conference Scene: pediatric pharmacogenomics and personalized medicine,” Pharmacogenomics, vol. 11, no. 12, pp. 1691–1702, 2010.
[34]  A. Clarke, “The genetic testing of children. Working Party of the Clinical Genetics Society (UK),” Journal of Medical Genetics, pp. 785–797, 1994.
[35]  S. B. Haga, K. Kawamoto, R. Agans, and G. S. Ginsburg, “Consideration of patient preferences and challenges in storage and access of pharmacogenetic test results,” Genetics in Medicine, vol. 13, no. 10, pp. 887–890, 2011.
[36]  S. B. Haga and W. Burke, “Practical ethics: establishing a pathway to benefit for complex pharmacogenomic tests,” Clinical Pharmacology & Therapeutics, vol. 90, no. 1, pp. 25–27, 2011.
[37]  H. C. Howard, Y. Joly, D. Avard, N. Laplante, M. Phillips, and J. C. Tardif, “Informed consent in the context of pharmacogenomic research: ethical considerations,” Pharmacogenomics Journal, vol. 11, no. 3, pp. 155–161, 2011.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133