Introduction. Ghrelin is a gastrointestinal endocrine peptide that was initially identified as the endogenous ligand of growth hormone secretagogue receptor; however, recently, the cardiovascular effect of this peptide has been indicated. In this study, we investigated the effect of ghrelin administration on serum biomarkers of angiogenesis including leptin, nitric oxide (NO), vascular endothelial growth factor (VEGF), and its soluble receptor (VEGF receptor 1 or sFlt-1) in control- and diet-induced obese mice. Methods. Male C57BL/6 mice were randomly divided into four groups, normal diet (ND) or control, ND + ghrelin, high-fat-diet (HFD) or obese and HFD + ghrelin ( /group). Obese and control groups received either HFD or ND for 15 weeks. Then, the ghrelin was injected subcutaneously 100?μg/kg twice daily for 10 days. At the end of experiment, blood samples were collected for blood glucose, serum insulin, VEGF, sFlt-1, NO, and leptin measurements. Results. The obese animals had higher serum NO and leptin concentrations without changes in serum VEGF and sFlt-1 levels compared to control. Administration of ghrelin significantly increased serum VEGF and decreased serum leptin and NO concentrations in HFD group. Conclusion. Since ghrelin changes serum biomarkers of angiogenesis, it seems that it gets involved during states with abnormal angiogenesis. 1. Introduction Prolonged imbalance of caloric intake and energy expenditure leads to complex metabolic disorder of obesity. It is associated with most common and chronic human diseases including type 2 diabetes, heart diseases, hypertension, and cancer [1]. Angiogenesis, the formation of new blood vessels from preexisting ones, is tightly linked with adipogenesis [2] and is considered as an essential component in development and expansion of adipose tissue [3]. Since expansion of adipose tissue (increasing cell size and number) creates adipose tissue hypoxia, it can lead to stabilization of the transcription factor hypoxia inducible factor1α (HIF-1α) [4, 5] that induces an angiogenic response [6]. Ghrelin is a gastrointestinal endocrine peptide and is identified as an endogenous ligand for the growth hormone secretagogue receptor type 1a (GHS-R Ia) [7]; however, it also regulates food intake and is associated with obesity [8]. Ghrelin and its receptors are expressed in endothelial cells and stimulate endothelial cell proliferation, migration, and angiogenesis [9]. Recently, the impact of ghrelin on cardiovascular system has been reported [10] including a decrease of peripheral vascular resistance in
References
[1]
F. Item and D. Konrad, “Visceral fat and metabolic inflammation: the portal theory revisited,” Obesity Reviews, vol. 13, supplement 2, pp. 30–39, 2012.
[2]
V. Christiaens and H. R. Lijnen, “Angiogenesis and development of adipose tissue,” Molecular and Cellular Endocrinology, vol. 318, no. 1-2, pp. 2–9, 2010.
[3]
L. Liu and M. Meydani, “Angiogenesis inhibitors may regulate adiposity,” Nutrition Reviews, vol. 61, no. 11, pp. 384–387, 2003.
[4]
J. Ye, Z. Gao, J. Yin, and Q. He, “Hypoxia is a potential risk factor for chronic inflammation and adiponectin reduction in adipose tissue of ob/ob and dietary obese mice,” American Journal of Physiology, vol. 293, no. 4, pp. E1118–E1128, 2007.
[5]
B. Wang, I. S. Wood, and P. Trayhurn, “Dysregulation of the expression and secretion of inflammation-related adipokines by hypoxia in human adipocytes,” Pflugers Archiv European Journal of Physiology, vol. 455, no. 3, pp. 479–492, 2007.
[6]
N. Halberg, T. Khan, M. E. Trujillo et al., “Hypoxia-inducible factor 1α induces fibrosis and insulin resistance in white adipose tissue,” Molecular and Cellular Biology, vol. 29, no. 16, pp. 4467–4483, 2009.
[7]
M. Kojima, H. Hosoda, Y. Date, M. Nakazato, H. Matsuo, and K. Kangawa, “Ghrelin is a growth-hormone-releasing acylated peptide from stomach,” Nature, vol. 402, no. 6762, pp. 656–660, 1999.
[8]
T. Shiiya, M. Nakazato, M. Mizuta et al., “Plasma ghrelin levels in lean and obese humans and the effect of glucose on ghrelin secretion,” Journal of Clinical Endocrinology and Metabolism, vol. 87, no. 1, pp. 240–244, 2002.
[9]
L. Wang, Q. Chen, G. Li, and D. Ke, “Ghrelin stimulates angiogenesis via GHSR1a-dependent MEK/ERK and PI3K/Akt signal pathways in rat cardiac microvascular endothelial cells,” Peptides, vol. 33, no. 1, pp. 92–100, 2012.
[10]
M. Tesauro, F. Schinzari, M. Caramanti, R. Lauro, and C. Cardillo, “Cardiovascular and metabolic effects of ghrelin,” Current Diabetes Reviews, vol. 6, no. 4, pp. 228–235, 2010.
[11]
N. Nagaya, M. Kojima, M. Uematsu et al., “Hemodynamic and hormonal effects of human ghrelin in healthy volunteers,” American Journal of Physiology, vol. 280, no. 5, pp. R1483–R1487, 2001.
[12]
T. Henriques-Coelho, J. Correia-Pinto, R. Roncon-Albuquerque et al., “Endogenous production of ghrelin and beneficial effects of its exogenous administration in monocrotaline-induced pulmonary hypertension,” American Journal of Physiology, vol. 287, no. 6, pp. H2885–H2890, 2004.
[13]
G. Baldanzi, N. Filigheddu, S. Cutrupi et al., “Ghrelin and des-acyl ghrelin inhibit cell death in cardiomyocytes and endothelial cells through ERK1/2 and PI 3-kinase/AKT,” Journal of Cell Biology, vol. 159, no. 6, pp. 1029–1037, 2002.
[14]
L. Chang, Y. Ren, X. Liu et al., “Protective effects of ghrelin on ischemia/reperfusion injury in the isolated rat heart,” Journal of Cardiovascular Pharmacology, vol. 43, no. 2, pp. 165–170, 2004.
[15]
J. P. Xu, H. X. Wang, W. Wang, L. K. Zhang, and C. S. Tang, “Ghrelin improves disturbed myocardial energy metabolism in rats with heart failure induced by isoproterenol,” Journal of Peptide Science, vol. 16, no. 8, pp. 392–402, 2010.
[16]
L. Li, L. K. Zhang, Y. Z. Pang et al., “Cardioprotective effects of ghrelin and des-octanoyl ghrelin on myocardial injury induced by isoproterenol in rats,” Acta Pharmacologica Sinica, vol. 27, no. 5, pp. 527–535, 2006.
[17]
K. Dezaki, H. Hosoda, M. Kakei et al., “Endogenous ghrelin in pancreatic islets restricts insulin release by attenuating Ca2+ signaling in β-cells: implication in the glycemic control in rodents,” Diabetes, vol. 53, no. 12, pp. 3142–3151, 2004.
[18]
T. Yada, K. Dezaki, H. Sone et al., “Ghrelin regulates insulin release and glycemia: physiological role and therapeutic potential,” Current Diabetes Reviews, vol. 4, no. 1, pp. 18–23, 2008.
[19]
J. Yang, M. S. Brown, G. Liang, N. V. Grishin, and J. L. Goldstein, “Identification of the acyltransferase that octanoylates ghrelin, an appetite-stimulating peptide hormone,” Cell, vol. 132, no. 3, pp. 387–396, 2008.
[20]
Y. Date, M. Nakazato, S. Hashiguchi et al., “Ghrelin is present in pancreatic α-cells of humans and rats and stimulates insulin secretion,” Diabetes, vol. 51, no. 1, pp. 124–129, 2002.
[21]
Y. Cao, “Angiogenesis modulates adipogenesis and obesity,” The Journal of Clinical Investigation, vol. 117, no. 9, pp. 2362–2368, 2007.
[22]
J. P. Cooke, “NO and angiogenesis,” Atherosclerosis Supplements, vol. 4, no. 4, pp. 53–60, 2003.
[23]
P. Codo?er-Franch, S. Tavárez-Alonso, R. Murria-Estal, J. Megías-Vericat, M. Tortajada-Girbés, and E. Alonso-Iglesias, “Nitric oxide production is increased in severely obese children and related to markers of oxidative stress and inflammation,” Atherosclerosis, vol. 215, no. 2, pp. 475–480, 2011.
[24]
E. Suganami, H. Takagi, H. Ohashi et al., “Leptin stimulates ischemia-induced retinal neovascularization: possible role of vascular endothelial growth factor expressed in retinal endothelial cells,” Diabetes, vol. 53, no. 9, pp. 2443–2448, 2004.
[25]
E. A. Hamed, M. M. Zakary, N. S. Ahmed, and R. M. Gamal, “Circulating leptin and insulin in obese patients with and without type 2 diabetes mellitus: relation to ghrelin and oxidative stress,” Diabetes Research and Clinical Practice, vol. 94, no. 3, pp. 434–441, 2011.
[26]
J. Gómez-Ambrosi, V. Catalán, A. Rodríguez et al., “Involvement of serum vascular endothelial growth factor family members in the development of obesity in mice and humans,” Journal of Nutritional Biochemistry, vol. 21, no. 8, pp. 774–780, 2010.
[27]
L. Yan, L. C. DeMars, and L. K. Johnson, “Long-term voluntary running improves diet-induced adiposity in young adult mice,” Nutrition Research, vol. 32, no. 6, pp. 458–465, 2012.
[28]
F. T. H. Wu, M. O. Stefanini, F. M. Gabhann, C. D. Kontos, B. H. Annex, and A. S. Popel, “A systems biology perspective on sVEGFR1: its biological function, pathogenic role and therapeutic use,” Journal of Cellular and Molecular Medicine, vol. 14, no. 3, pp. 528–552, 2010.
[29]
J. Tam, D. G. Duda, J. Y. Perentes, R. S. Quadri, D. Fukumura, and R. K. Jain, “Blockade of VEGFR2 and not VEGFR1 can limit diet-induced fat tissue expansion: role of local versus bone marrow-derived endothelial cells,” PLoS ONE, vol. 4, no. 3, Article ID e4974, 2009.
[30]
V. Tolle, M. Kadem, M. T. Bluet-Pajot et al., “Balance in Ghrelin and leptin plasma levels in anorexia nervosa patients and constitutionally thin women,” Journal of Clinical Endocrinology and Metabolism, vol. 88, no. 1, pp. 109–116, 2003.
[31]
M. Tesauro, F. Schinzari, M. Iantorno et al., “Ghrelin improves endothelial function in patients with metabolic syndrome,” Circulation, vol. 112, no. 19, pp. 2986–2992, 2005.
[32]
H. Kimura and H. Esumi, “Reciprocal regulation between nitric oxide and vascular endothelial growth factor in angiogenesis,” Acta Biochimica Polonica, vol. 50, no. 1, pp. 49–59, 2003.
[33]
V. D. Dixit, E. M. Schaffer, R. S. Pyle et al., “Ghrelin inhibits leptin- and activation-induced proinflammatory cytokine expression by human monocytes and T cells,” The Journal of Clinical Investigation, vol. 114, no. 1, pp. 57–66, 2004.
[34]
M. J. Yuan, H. He, H. Y. Hu, Q. Li, J. Hong, and C. X. Huang, “Myocardial angiogenesis after chronic ghrelin treatment in a rat myocardial infarction model,” Regulatory Peptides, vol. 179, no. 1–3, pp. 39–42, 2012.