This work reports on synthesis of zinc oxide/reduced graphene oxide (ZnO/rGO) nanocomposites in the presence of diethylenetriamine (DETA) via a facile microwave method. The X-ray diffraction (XRD) patterns of the nanocomposites correspond to the ZnO hexagonal phase wurtzite structure. The high-resolution transmission electron microscopy (HRTEM) images revealed that the ZnO nanorods, with an average length?:?diameter ratio of 10, were successfully deposited on the rGO sheets. Under the irradiation of sunlight, the nanocomposites showed enhanced adsorption-photocatalysis by more than twofold and photocurrent response by sixfold compared to the ZnO. The excellent photoactivity performance of the nanocomposites is contributed by smaller ZnO nanorod and the presence of rGO that acts as a photosensitizer by transferring electrons to the conduction band of ZnO within the nanocomposite during sunlight illumination. 1. Introduction Direct discharge of pigments and dyes by textile industries into waters endangers the aquatic lives. The colours block the sunlight from passing through the water, causing disturbance to the natural growth cycles of the living organisms in the waters. The heavy metals and organic and inorganic complexes used in the making of pigments and dyes are highly toxic and will accumulate in the fat deposits of large fishes which will be consumed by organisms in the higher order on land. Conventional biological treatments are only effective to adsorb the dye, causing secondary pollution [1, 2]. Photocatalysis is a method used to eliminate organic compounds in wastewater by mineralizing them into the simplest compounds like water and carbon monoxide. Semiconductor photocatalysts have been studied extensively because of favorable combination of electronic structure, light absorption properties, and charge transport characteristics. ZnO has been known as a suitable alternative to TiO2 because of its strong oxidizing power, nontoxicity, and being relatively inexpensive. Its wide band gap (3.37?eV) and higher electron mobility hamper its use as a photocatalyst [3–6]. In an effort to improve the photocatalytic efficiency of ZnO, it has been doped, loaded, and combined with metals, nonmetals, and semiconductors [7–10]. Recently, researchers are astounded with graphene because of its unique electronic properties and large theoretical specific surface area. These properties make graphene a good candidate for combination with the ZnO because graphene’s pristine mechanical performance stabilizes catalysis and offers a two-dimensional plane to deposit
References
[1]
A. K. Asiagwu, “Sorption model for the removal of m-anisidine dye from aqueous solution using beaker's yeast (Saccharomuces cerevisiae),” International Journal of Research and Reviews in Applied Sciences, vol. 13, pp. 617–625, 2012.
[2]
E. S. Beach, R. T. Malecky, R. R. Gil, C. P. Horwitz, and T. J. Collins, “Fe-TAML/hydrogen peroxide degradation of concentrated solutions of the commercial azo dye tartrazine,” Catalysis Science and Technology, vol. 1, no. 3, pp. 437–443, 2011.
[3]
A. K. Singh, S. S. Multani, and S. B. Patil, “ZnO nanorods and nanopolypods synthesized using microwave assisted wet chemical and thermal evaporation method,” Indian Journal of Pure and Applied Physics, vol. 49, no. 4, pp. 270–276, 2011.
[4]
M. Gusatti, J. D. A. do Rosário, C. E. M. de Campos et al., “Production and characterization of ZnO nanocrystals obtained by solochemical processing at different temperatures,” Journal of Nanoscience and Nanotechnology, vol. 10, no. 7, pp. 4348–4351, 2010.
[5]
S. Xu and Z. L. Wang, “One-dimensional ZnO nanostructures: solution growth and functional properties,” Nano Research, vol. 4, no. 11, pp. 1013–1098, 2011.
[6]
Y. Yang, L. Ren, C. Zhang, S. Huang, and T. Liu, “Facile fabrication of functionalized graphene sheets (FGS)/ZnO nanocomposites with photocatalytic property,” ACS Applied Materials and Interfaces, vol. 3, no. 7, pp. 2779–2785, 2011.
[7]
N. P. Mohabansi, V. B. Patil, and N. Yenkie, “A comparative study on photo degradation of methylene blue dye effluent by advanced oxidation process by using TiO2/ZnO photo catalyst,” Rasayan Journal of Chemistry, vol. 4, no. 4, pp. 814–819, 2011.
[8]
J. B. Zhong, J. Z. Li, X. Y. He et al., “Improved photocatalytic performance of Pd-doped ZnO,” Current Applied Physics, vol. 12, no. 3, pp. 998–1001, 2012.
[9]
M.-K. Lee and H.-F. Tu, “Au-ZnO and Pt-ZnO films prepared by electrodeposition as photocatalysts,” Journal of the Electrochemical Society, vol. 155, no. 12, pp. D758–D762, 2008.
[10]
J. V. Foreman, J. Li, H. Peng, S. Choi, H. O. Everitt, and J. Liu, “Time-resolved investigation of bright visible wavelength luminescence from sulfur-doped ZnO nanowires and micropowders,” Nano Letters, vol. 6, no. 6, pp. 1126–1130, 2006.
[11]
X. Zhou, T. Shi, and H. Zhou, “Hydrothermal preparation of ZnO-reduced graphene oxide hybrid with high performance in photocatalytic degradation,” Applied Surface Science, vol. 258, no. 17, pp. 6204–6211, 2012.
[12]
A. R. Marlinda, N. M. Huang, M. R. Muhamad, et al., “Highly efficient preparation of ZnO nanorods decorated reduced graphene oxide nanocomposites,” Materials Letters, vol. 80, pp. 9–12, 2012.
[13]
W. Zou, J. Zhu, Y. Sun, and X. Wang, “Depositing ZnO nanoparticles onto graphene in a polyol system,” Materials Chemistry and Physics, vol. 125, no. 3, pp. 617–620, 2011.
[14]
W.-T. Song, J. Xie, S.-Y. Liu et al., “Graphene decorated with ZnO nanocrystals with improved electrochemical properties prepared by a facile in situ hydrothermal route,” International Journal of Electrochemical Science, vol. 7, no. 3, pp. 2164–2174, 2012.
[15]
W. Zou, J. Zhu, and X. Wang, “Preparation and characterization of graphene oxide-ZnO nanocomposites,” Materials Science Forum, vol. 688, pp. 228–232, 2011.
[16]
T. Lv, L. Pan, X. Liu et al., “One-step synthesis of CdS-TiO2-chemically reduced graphene oxide composites via microwave-assisted reaction for visible-light photocatalytic degradation of methyl orange,” Catalysis Science and Technology, vol. 2, no. 4, pp. 754–758, 2012.
[17]
P. D. Tran, S. K. Batabyal, S. S. Pramana, J. Barber, L. H. Wong, and S. C. J. Loo, “A cuprous oxide-reduced graphene oxide (Cu2O-rGO) composite photocatalyst for hydrogen generation: employing rGO as an electron acceptor to enhance the photocatalytic activity and stability of Cu2O,” Nanoscale, vol. 4, pp. 3875–3878, 2012.
[18]
X. Dou, “Is graphene brand new in carbon-based semiconductor photocatalysts for organic pollutants degradation?” Journal of Thermodynamics and Catalysis, vol. 3, pp. 1–2, 2013.
[19]
Y. Zheng, K. Lv, Z. Wang, K. Deng, and M. Li, “Microwave-assisted rapid synthesis of anatase TiO2 nanocrystals with exposed {001} facets,” Journal of Molecular Catalysis A, vol. 356, pp. 137–143, 2012.
[20]
W.-T. Yao, S.-H. Yu, S.-J. Liu, J.-P. Chen, X.-M. Liu, and F.-Q. Li, “Architectural control syntheses of CdS and CdSe nanoflowers, branched nanowires, and nanotrees via a solvothermal approach in a mixed solution and their photocatalytic property,” Journal of Physical Chemistry B, vol. 110, no. 24, pp. 11704–11710, 2006.
[21]
X. Xu, Y. Zhou, T. Yuan, and Y. Li, “Methanol electrocatalytic oxidation on Pt nanoparticles on nitrogen doped graphene prepared by the hydrothermal reaction of graphene oxide with urea,” Electrochimica Acta, vol. 112, pp. 587–595, 2013.
[22]
Y. Liu, C. Xie, J. Li, T. Zou, and D. Zeng, “New insights into the relationship between photocatalytic activity and photocurrent of TiO2/WO3 nanocomposite,” Applied Catalysis A, vol. 433-434, pp. 81–87, 2012.
[23]
Y. Li, W. Gao, L. Ci, C. Wang, and P. M. Ajayan, “Catalytic performance of Pt nanoparticles on reduced graphene oxide for methanol electro-oxidation,” Carbon, vol. 48, no. 4, pp. 1124–1130, 2010.
[24]
S. V. Kumar, N. M. Huang, N. Yusoff, and H. N. Lim, “High performance magnetically separable graphene/zinc oxide nanocomposite,” Materials Letters, vol. 93, pp. 411–414, 2013.
[25]
G. Singh, A. Choudhary, D. Haranath et al., “ZnO decorated luminescent graphene as a potential gas sensor at room temperature,” Carbon, vol. 50, no. 2, pp. 385–394, 2012.
[26]
Y. K. Kim and D. H. Min, “Simultaneous reduction and functionalization of graphene oxide by polyallylamine for nanocomposite formation,” Carbon Letters, vol. 13, pp. 29–33, 2012.
[27]
J. Yang and S. Gunasekaran, “Electrochemically reduced graphene oxide sheets as high performance supercapacitors,” Carbon, vol. 51, pp. 36–44, 2013.
[28]
Y. Yang and T. Liu, “Fabrication and characterization of graphene oxide/zinc oxide nanorods hybrid,” Applied Surface Science, vol. 257, no. 21, pp. 8950–8954, 2011.
[29]
X. Liu, L. Pan, Q. Zhao et al., “UV-assisted photocatalytic synthesis of ZnO-reduced graphene oxide composites with enhanced photocatalytic activity in reduction of Cr(VI),” Chemical Engineering Journal, vol. 183, pp. 238–243, 2012.
[30]
J. Y. Li and H. Li, “Physical and electrical performance of vapor-solid grown ZnO straight nanowires,” Nanoscale Research Letters, vol. 4, no. 2, pp. 165–168, 2009.
[31]
X.-Y. Ye, Y.-M. Zhou, Y.-Q. Sun, J. Chen, and Z.-Q. Wang, “Preparation and characterization of Ag/ZnO composites via a simple hydrothermal route,” Journal of Nanoparticle Research, vol. 11, no. 5, pp. 1159–1166, 2009.
[32]
A. C. Ferrari, “Raman spectroscopy of graphene and graphite: disorder, electron-phonon coupling, doping and nonadiabatic effects,” Solid State Communications, vol. 143, no. 1-2, pp. 47–57, 2007.
[33]
S. Stankovich, D. A. Dikin, R. D. Piner et al., “Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide,” Carbon, vol. 45, no. 7, pp. 1558–1565, 2007.
[34]
J. Yang, X. Zhao, X. Shan et al., “Blue-shift of UV emission in ZnO/graphene composites,” Journal of Alloys and Compounds, vol. 556, pp. 1–5, 2013.
[35]
T. Xu, L. Zhang, H. Cheng, and Y. Zhu, “Significantly enhanced photocatalytic performance of ZnO via graphene hybridization and the mechanism study,” Applied Catalysis B, vol. 101, no. 3-4, pp. 382–387, 2011.
[36]
H. Kim, J. T. Baek, and H. H. Park, “A study of the electrical properties of graphene-incorporated direct-patternable ZnO thin films,” Thin Solid Films, vol. 529, pp. 234–2237, 2013.
[37]
A. Prakash, S. K. Misra, and D. Bahadur, “The role of reduced graphene oxide capping on defect induced ferromagnetism of ZnO nanorods,” Nanotechnology, vol. 24, Article ID 095705, 2013.
[38]
J. Wang, B. Li, J. Chen et al., “Diethylenetriamine-assisted synthesis of CdS nanorods under reflux condition and their photocatalytic performance,” Journal of Alloys and Compounds, vol. 535, pp. 15–20, 2012.
[39]
H. N. Lim, R. Nurzulaikha, I. Harrison et al., “Preparation and characterization of tin oxide, SnO2 nanoparticles decorated graphene,” Ceramics International, vol. 38, no. 5, pp. 4209–4216, 2012.
[40]
N. Xu, Z. Shi, Y. Fan, J. Dong, J. Shi, and M. Z.-C. Hu, “Effects of particle size of TiO2 on photocatalytic degradation of methylene blue in aqueous suspensions,” Industrial and Engineering Chemistry Research, vol. 38, no. 2, pp. 373–379, 1999.
[41]
F. Ye, Y. Peng, C. Guang-Yi, B. Deng, and X. An-Wu, “Facile solution synthesis and characterization of ZnO mesocrystals and ultralong nanowires from layered basic zinc salt precursor,” Journal of Physical Chemistry C, vol. 113, no. 24, pp. 10407–10415, 2009.
[42]
R. Kou, Y. Shao, D. Wang et al., “Enhanced activity and stability of Pt catalysts on functionalized graphene sheets for electrocatalytic oxygen reduction,” Electrochemistry Communications, vol. 11, no. 5, pp. 954–957, 2009.
[43]
A. A. Más and D. Wei, “Photoelectrochemical properties of graphene and its derivatives,” Nanomaterials, vol. 3, pp. 325–356, 2013.
[44]
J. Durantini, P. P. Boix, M. Gervaldo et al., “Photocurrent enhancement in dye-sensitized photovoltaic devices with titania-graphene composite electrodes,” Journal of Electroanalytical Chemistry, vol. 683, pp. 43–46, 2012.