Three composite sponges were made with 10% of curcumin and by using polymers, namely, chitosan and gelatin with various ratios. The chemical structure and morphology were evaluated by FTIR and SEM. These sponges were evaluated for water absorption capacity, antibacterial activity, in vitro drug release, and in vivo wound healing studies by excision wound model using rabbits. The in vivo study presented a greater wound closure in wounds treated with curcumin-composite sponge than those with composite sponge without curcumin and untreated group. These obtained results showed that combination of curcumin, chitosan and gelatin could improve the wound healing activity in comparison to chitosan, and gelatin without curcumin. 1. Introduction Medicines derived from plants play an important role in the healthcare of many cultures, both ancient and modern. Curcumin (diferuloylmethane, a polyphenol) is an active agent of the perennial herb Curcuma longa (commonly known as turmeric). Curcumin is a naturally occurring polyphenolic phytoconstituent which presents anticancer, antioxidant, anti-inflammatory, hyperlipidemic, antibacterial, wound healing, and hepatoprotective activities [1, 2]. The therapeutic efficacy of curcumin is limited due to its poor aqueous solubility and extensive first pass metabolism [3–5]. Topical formulation of curcumin (curcumin incorporated collagen matrix) was a feasible and productive approach to support dermal wound healing [1]. Therefore, development of novel curcumin formulation and delivery systems is required. The topical delivery of naturally occurring compounds, such as curcumin or catechins, is able to increase its solubility, stability, and pharmacological activities, resulting in improvement of therapeutic effects [6]. Additionally, chitosan, a polysaccharide biopolymer derived from naturally occurring chitin, displays unique polycationic, chelating, and film-forming properties due to the presence of active amino and hydroxyl functional groups. Chitosan also exhibits a number of interesting biological activities, including antimicrobial activity, induced disease resistance in plants, and diverse stimulating or inhibiting activities toward a number of human cell types [7, 8]. Moreover, chitosan can be used to prevent or treat wound and burn infections due to its intrinsic antimicrobial properties and its ability to deliver extrinsic antimicrobial agents to wounds and burns [9]. Additionally, it can accelerate the functions of inflammatory cells, macrophages, and fibroblasts [10, 11]. Chitosan and its derivatives are also used to
References
[1]
D. Gopinath, M. R. Ahmed, K. Gomathi, K. Chitra, P. K. Sehgal, and R. Jayakumar, “Dermal wound healing processes with curcumin incorporated collagen films,” Biomaterials, vol. 25, no. 10, pp. 1911–1917, 2004.
[2]
P. Basnet and N. Skalko-Basnet, “Curcumin: an anti-inflammatory molecule from a curry spice on the path to cancer treatment,” Molecules, vol. 16, no. 6, pp. 4567–4598, 2011.
[3]
A. Kunwar, A. Barik, R. Pandey, and K. I. Priyadarsini, “Transport of liposomal and albumin loaded curcumin to living cells: an absorption and fluorescence spectroscopic study,” Biochimica et Biophysica Acta, vol. 1760, no. 10, pp. 1513–1520, 2006.
[4]
A. Kumar, S. Dogra, and A. Prakash, “Protective effect of curcumin (Curcuma longa), against aluminium toxicity: possible behavioral and biochemical alterations in rats,” Behavioural Brain Research, vol. 205, no. 2, pp. 384–390, 2009.
[5]
B. T. Kurien and R. H. Scofield, “Increasing aqueous solubility of curcumin for improving bioavailability,” Trends in Pharmacological Sciences, vol. 30, no. 7, pp. 334–335, 2009.
[6]
C.-H. Chen, M.-F. Hsieh, Y.-N. Ho et al., “Enhancement of catechin skin permeation via a newly fabricated mPEG-PCL-graft-2-hydroxycellulose membrane,” Journal of Membrane Science, vol. 371, no. 1-2, pp. 134–140, 2011.
[7]
B. Wang, K. Chen, S. Jiang et al., “Chitosan-mediated synthesis of gold nanoparticles on patterned poly(dimethylsiloxane) surfaces,” Biomacromolecules, vol. 7, no. 4, pp. 1203–1209, 2006.
[8]
H. Yi, L.-Q. Wu, W. E. Bentley et al., “Biofabrication with chitosan,” Biomacromolecules, vol. 6, no. 6, pp. 2881–2894, 2005.
[9]
T. Dai, M. Tanaka, Y.-Y. Huang, and M. R. Hamblin, “Chitosan preparations for wounds and burns: antimicrobial and wound-healing effects,” Expert Review of Anti-Infective Therapy, vol. 9, no. 7, pp. 857–879, 2011.
[10]
R. Jayakumar, M. Prabaharan, P. T. Sudheesh Kumar, S. V. Nair, and H. Tamura, “Biomaterials based on chitin and chitosan in wound dressing applications,” Biotechnology Advances, vol. 29, no. 3, pp. 322–337, 2011.
[11]
R. A. A. Muzzarelli, “Chitins and chitosans for the repair of wounded skin, nerve, cartilage and bone,” Carbohydrate Polymers, vol. 76, no. 2, pp. 167–182, 2009.
[12]
S.-J. Yang, F.-H. Lin, K.-C. Tsai et al., “Folic acid-conjugated chitosan nanoparticles enhanced protoporphyrin IX accumulation in colorectal cancer cells,” Bioconjugate Chemistry, vol. 21, no. 4, pp. 679–689, 2010.
[13]
Y.-Q. Ye, F.-Y. Chen, Q.-A. Wu et al., “Enhanced cytotoxicity of core modified chitosan based polymeric micelles for doxorubicin delivery,” Journal of Pharmaceutical Sciences, vol. 98, no. 2, pp. 704–712, 2009.
[14]
H. Zhou, W. Yu, X. Guo et al., “Synthesis and characterization of amphiphilic glycidol-chitosan-deoxycholic acid nanoparticles as a drug carrier for doxorubicin,” Biomacromolecules, vol. 11, no. 12, pp. 3480–3486, 2010.
[15]
A. Tanaka, T. Nagate, and H. Matsuda, “Acceleration of wound healing by gelatin film dressings with epidermal growth factor,” Journal of Veterinary Medical Science, vol. 67, no. 9, pp. 909–913, 2005.
[16]
E. J. Chong, T. T. Phan, I. J. Lim et al., “Evaluation of electrospun PCL/gelatin nanofibrous scaffold for wound healing and layered dermal reconstitution,” Acta Biomaterialia, vol. 3, no. 3, pp. 321–330, 2007.
[17]
K. Madhumathi, P. T. Sudheesh Kumar, S. Abhilash et al., “Development of novel chitin/nanosilver composite scaffolds for wound dressing applications,” Journal of Materials Science, vol. 21, no. 2, pp. 807–813, 2010.
[18]
M. Dai, X. Zheng, X. Xu et al., “Chitosan-alginate sponge: preparation and application in curcumin delivery for dermal wound healing in rat,” Journal of Biomedicine and Biotechnology, vol. 2009, Article ID 595126, 8 pages, 2009.
[19]
M. C. Silva and C. T. Andrade, “Evaluating conditions for the formation of chitosan/gelatin microparticles,” Polimeros, vol. 19, no. 2, pp. 133–137, 2009.
[20]
T. V. L. Hima Bindu, M. Vidyavathi, K. Kavitha, T. P. Sastry, and R. V. Suresh kumar, “Preparation and evaluation of ciprofloxacin loaded chitosan-gelatin composite films for wound healing activity,” International Journal of Drug Delivery, vol. 2, no. 2, 2011.