The ontogenetic variability in venom composition of some snake genera, including Bothrops, as well as the biological implications of such variability and the search of new molecules that can neutralize the toxic components of these venoms have been the subject of many studies. Thus, considering the resistance of Bothrops jararaca to the toxic action of its own venom and the ontogenetic variability in venom composition described in this species, a comparative study of the plasma composition of juvenile and adult B. jararaca snakes was performed through a proteomic approach based on 2D electrophoresis and mass spectrometry, which allowed the identification of proteins that might be present at different levels during ontogenetic development. Among the proteins identified by mass spectrometry, antihemorrhagic factor Bj46a was found only in adult plasma. Moreover, two spots identified as phospholipase A2 inhibitors were significantly increased in juvenile plasma, which can be related to the higher catalytic PLA2 activity shown by juvenile venom in comparison to that of adult snakes. This work shows the ontogenetic variability of B. jararaca plasma, and that these changes can be related to the ontogenetic variability described in its venom. 1. Introduction Poisonous snakes are responsible for around 50,000 deaths among five million cases of ophidian accidents per year in the world, especially in the rural areas of tropical countries in Asia, Africa, and South America [1, 2]. Envenomation by Viperidae snakes causes local tissue damages such as edema, hemorrhage, and myonecrosis, which are not well neutralized by conventional antivenom serotherapy [3]. Bothrops jararaca (B. jararaca) snake belongs to the Viperidae family and is the main reason for ophidian accidents in the state of S?o Paulo, Brazil [4]. Its victims usually have, besides systemic reactions of envenomation such as bleeding and blood incoagulability, local effects at the bite site such as edema, ecchymoses, compartmental syndrome, blisters, and necrosis [5]. The envenomation symptomatology has always stimulated researches on snake venom composition and function. Unfortunately, the same is not observed for snake plasma. Despite extensive biochemical and molecular characterization of blood coagulation in mammals, little information is available about haemostasis in other vertebrates [6], although there is an increasing interest in the “natural resistance” of snakes towards the toxicity of its own venom and towards other snake venoms. The inter- and intraspecies resistibility can contribute to the
References
[1]
D. A. Warrell, “Clinical features of envenoming from snake bite,” in Envenomings and Their Treatments, C. Bon and M. Goyffon, Eds., pp. 63–76, Fondation Marcel Mérieux, Lyon, France, 1996.
[2]
J. P. Chippaux, “Snake-bites: appraisal of the global situation,” Bulletin of the World Health Organization, vol. 76, no. 5, pp. 515–524, 1998.
[3]
A. Ohsaka, “Hemorragic, necrotizing and edma-forming effects of snake venoms,” in Snake Venoms, C. Y. Lee, Ed., pp. 480–546, Springer, Berlin, Germany, 1979.
[4]
L. A. Ribeiro and M. T. Jorge, “Acidente por serpentes do gênero Bothrops: série de 3.139 casos,” Revista da Sociedade Brasileira de Medicina Tropical, vol. 30, pp. 475–480, 1997.
[5]
M. L. Santoro, I. S. Sano-Martins, H. W. Fan, J. L. Cardoso, R. D. G. Theakston, and D. A. Warrell, “Haematological evaluation of patients bitten by the jararaca, Bothrops jararaca, in Brazil,” Toxicon, vol. 51, no. 8, pp. 1440–1448, 2008.
[6]
L. Nahas, A. S. Kamiguti, F. Betti, I. S. Sano Martins, and M. I. Rodrigues, “Blood coagulation mechanism in the snakes Waglerophis merremii and Bothrops jararaca,” Comparative Biochemistry and Physiology Part A, vol. 69, no. 4, pp. 739–743, 1981.
[7]
S. Lizano, G. Domont, and J. Perales, “Natural phospholipase A2 myotoxin inhibitor proteins from snakes, mammals and plants,” Toxicon, vol. 42, no. 8, pp. 963–977, 2003.
[8]
G. Faure, “Natural inhibitors of toxic phospholipases A2,” Biochimie, vol. 82, no. 9-10, pp. 833–840, 2000.
[9]
S. J. Burden, H. C. Hartzell, and D. Yoshikami, “Acetylcholine receptors at neuromuscular synapses: phylogenetic difference detected by snake α neurotoxins,” Proceedings of the National Academy of Sciences of the United States of America, vol. 72, no. 8, pp. 3245–3249, 1975.
[10]
D. Neumann, D. Barchan, M. Horowitz, E. Kochva, and S. Fuchs, “Snake acetylcholine receptor: cloning of the domain containing the four extracellular cysteines of the α subunit,” Proceedings of the National Academy of Sciences of the United States of America, vol. 86, no. 18, pp. 7255–7259, 1989.
[11]
B. Ohana, Y. Fraenkel, G. Navon, and J. M. Gershoni, “Molecular dissection of cholinergic binding sites: how do snakes escape the effect of their own toxins?” Biochemical and Biophysical Research Communications, vol. 179, no. 1, pp. 648–654, 1991.
[12]
D. Barchan, S. Kachalsky, D. Neumann et al., “How the mongoose can fight the snake: the binding site of the mongoose acetylcholine receptor,” Proceedings of the National Academy of Sciences of the United States of America, vol. 89, no. 16, pp. 7717–7721, 1992.
[13]
T. Omori-Satoh, S. Sadahiro, A. Ohsaka, and R. Murata, “Purification and characterization of an antihemorrhagic factor in the serum of Trimeresurus flavoviridis, a crotalid,” Biochimica et Biophysica Acta, vol. 285, no. 2, pp. 414–426, 1972.
[14]
M. Ovadia, “Purification and characterization of an antihemorrhagic factor from the serum of the snake Vipera palaestinae,” Toxicon, vol. 16, no. 6, pp. 661–672, 1978.
[15]
S. Weissenberg, M. Ovadia, G. Fleminger, and E. Kochva, “Antihemorrhagic factors from the blood serum of the western diamondback rattlesnake Crotalus atrox,” Toxicon, vol. 29, no. 7, pp. 807–818, 1991.
[16]
S. Pichyangkul and J. C. Perez, “Purification and characterization of a naturally occurring antihemorrhagic factor in the serum of the hispid cotton rat (Sigmodon hispidus),” Toxicon, vol. 19, no. 2, pp. 205–215, 1981.
[17]
M. Ovadia, E. Kochva, and B. Moav, “The neutralization mechanism of Vipera palaestinae neurotoxin by a purified factor from homologous serum,” Biochimica et Biophysica Acta, vol. 491, no. 2, pp. 370–386, 1977.
[18]
C. L. Fortes-Dias, B. C. B. Fonseca, E. Kochva, and C. R. Diniz, “Purification and properties of an antivenom factor from the plasma of the South American rattlesnake (Crotalus durissus terrificus),” Toxicon, vol. 29, no. 8, pp. 997–1008, 1991.
[19]
C. L. Fortes-Dias, Y. Lin, J. Ewell, C. R. Diniz, and T. Y. Liu, “A phospholipase A2 inhibitor from the plasma of the South American rattlesnake (Crotalus durissus terrificus). Protein structure, genomic structure, and mechanism of action,” Journal of Biological Chemistry, vol. 269, no. 22, pp. 15646–15651, 1994.
[20]
J. Perales, C. Villela, G. B. Domont et al., “Molecular structure and mechanism of action of the crotoxin inhibitor from Crotalus durissus terrificus serum,” European Journal of Biochemistry, vol. 227, no. 1-2, pp. 19–26, 1995.
[21]
J. Shao, H. Shen, and B. Havsteen, “Purification, characterization and binding interactions of the Chinese-cobra (Naja naja atra) serum antitoxic protein CSAP,” Biochemical Journal, vol. 293, no. 2, pp. 559–566, 1993.
[22]
W. Xiaolu, B. Havsteen, and H. Hansen, “Evidence of the coevolution of a snake toxin and its endogenous antitoxin cloning, sequence and expression of a serum albumin cDNA of the Chinese cobra,” Biological Chemistry Hoppe-Seyler, vol. 376, no. 9, pp. 545–553, 1995.
[23]
S. Lizano, B. Lomonte, J. W. Fox, and J. M. Gutiérrez, “Biochemical characterization and pharmacological properties of a phospholipase A2 myotoxin inhibitor from the plasma of the snake Bothrops asper,” Biochemical Journal, vol. 326, no. 3, pp. 853–859, 1997.
[24]
S. Lizano, Y. Angulo, B. Lomonte et al., “Two phospholipase A2 inhibitors from the plasma of Cerrophidion (Bothrops) godmani which selectively inhibit two different group-II phospholipase A2 myotoxins from its own venom: isolation, molecular cloning and biological properties,” Biochemical Journal, vol. 346, no. 3, pp. 631–639, 2000.
[25]
J. W. Fox and J. B. Bjarnason, “Metalloproteinase inhibitors,” in Enzymes from Snake Venoms, G. S. Bailey, Ed., pp. 559–632, Alaken Inc, Fort Collins, Colo, USA, 1998.
[26]
J. C. Pérez and E. E. Sánchez, “Natural protease inhibitors to hemorrhagins in snake venoms and their potential use in medicine,” Toxicon, vol. 37, no. 5, pp. 703–728, 1999.
[27]
J. Perales and G. B. Domont, “Are inhibitors of metallopreoteinases, phospholipase A2 and myotoxins members os the innate immune system?” in Perspectives in Molecular Toxinology, A. Ménez, Ed., Wiley, Chichester, UK, 2002.
[28]
C. L. Fortes-Dias, “Endogenous inhibitors of snake venom phospholipases A2 in the blood plasma of snakes,” Toxicon, vol. 40, no. 5, pp. 481–484, 2002.
[29]
A. M. Tanaka-Azevedo, A. S. Tanaka, and I. S. Sano-Martins, “A new blood coagulation inhibitor from the snake Bothrops jararaca plasma: isolation and characterization,” Biochemical and Biophysical Research Communications, vol. 308, no. 4, pp. 706–712, 2003.
[30]
C. O. Vieira, “Bothrops jararaca fibrinogen and its resistance to hydrolysis evoked by snake venoms,” Comparative Biochemistry and Physiology, vol. 151, no. 4, pp. 428–432, 2008.
[31]
D. F. Vieira, L. Watanabe, C. D. Sant'ana et al., “Purification and characterization of jararassin-I, a thrombin-like enzyme from Bothrops jararaca snake venom,” Acta Biochimica et Biophysica Sinica, vol. 36, no. 12, pp. 798–802, 2004.
[32]
A. Zelanis, A. K. Tashima, M. M. T. Rocha et al., “Analysis of the ontogenetic variation in the venom proteome/peptidome of Bothrops jararaca reveals different strategies to deal with prey,” Journal of Proteome Research, vol. 9, no. 5, pp. 2278–2291, 2010.
[33]
S. A. Minton and S. A. Weinstein, “Geographic and ontogenic variation in venom of the western diamondback rattlesnake (Crotalus atrox),” Toxicon, vol. 24, no. 1, pp. 71–80, 1986.
[34]
S. P. Mackessy, “Venom ontogeny in the pacific rattlesnakes Crotalus viridis helleri and C. v. oreganus,” Copeia, vol. 1988, pp. 92–101, 1988.
[35]
J. M. Gutierrez, C. Avila, Z. Camacho, and B. Lomonte, “Ontogenetic changes in the venom of the snake Lachesis muta stenophrys (bushmaster) from Costa Rica,” Toxicon, vol. 28, no. 4, pp. 419–426, 1990.
[36]
J. M. Gutierrez, M. C. Dos Santos, M. De Fatima Furtado, and G. Rojas, “Biochemical and pharmacological similarities between the venoms of newborn Crotalus durissus durissus and adult Crotalus durissus terrificus rattlesnakes,” Toxicon, vol. 29, no. 10, pp. 1273–1277, 1991.
[37]
P. Saravia, E. Rojas, V. Arce et al., “Geographic and ontogenic variability in the venom of the neotropical rattlesnake Crotalus durissus: pathophysiological and therapeutic implications,” Revista de Biologia Tropical, vol. 50, no. 1, pp. 337–346, 2002.
[38]
M. F. D. Furtado, M. Maruyama, A. S. Kamiguti, and L. C. Antonio, “Comparative study of nine Bothrops snake venoms from adult female snakes and their offspring,” Toxicon, vol. 29, no. 2, pp. 219–226, 1991.
[39]
J. L. López-Lozano, M. V. De Sousa, C. A. O. Ricart et al., “Ontogenetic variation of metalloproteinases and plasma coagulant activity in venoms of wild Bothrops atrox specimens from Amazonian rain forest,” Toxicon, vol. 40, no. 7, pp. 997–1006, 2002.
[40]
R. A. P. Guércio, A. Shevchenko, A. Shevchenko et al., “Ontogenetic variations in the venom proteome of the Amazonian snake Bothrops atrox,” Proteome Science, vol. 4, article 11, 2006.
[41]
A. Zelanis, J. de Souza Ventura, A. M. Chudzinski-Tavassi, and M. D. F. D. Furtado, “Variability in expression of Bothrops insularis snake venom proteases: an ontogenetic approach,” Comparative Biochemistry and Physiology C, vol. 145, no. 4, pp. 601–609, 2007.
[42]
J. Monteiro, “Rela??o da Província do Brasil,” in História da Companhia de Jesus no Brasil, S. Leite, Ed., Instituto Nacional do Livro, Rio de Janeiro, Brazil, 1949.
[43]
I. Sazima, “Natural history of the jararaca pitviper, Bothrops jararaca, in southeastern Brazil,” in Biology of the Pitvipers, J. A. Campbell and E. D. Brodie, Eds., pp. 199–216, Tyler, Selva, Spain, 1992.
[44]
T. R. F. Janeiro-Cinquini, “Varia??o anual do sistema reprodutor de fêmeas de Bothrops jararaca (Serpentes, Viperidae),” Iheringia Série Zoologia, vol. 94, pp. 325–328, 2004.
[45]
P. K. Smith, R. I. Krohn, and G. T. Hermanson, “Measurement of protein using bicinchoninic acid,” Analytical Biochemistry, vol. 150, no. 1, pp. 76–85, 1985.
[46]
U. K. Laemmli, “Cleavage of structural proteins during the assembly of the head of bacteriophage T4,” Nature, vol. 227, no. 5259, pp. 680–685, 1970.
[47]
A. Shevchenko, M. Wilm, O. Vorm, and M. Mann, “Mass spectrometric sequencing of proteins from silver-stained polyacrylamide gels,” Analytical Chemistry, vol. 68, no. 5, pp. 850–858, 1996.
[48]
G. B. Domont, J. Perales, and H. Moussatche, “Natural anti-snake venom proteins,” Toxicon, vol. 29, no. 10, pp. 1183–1194, 1991.
[49]
M. M. Thwin and P. Gopalakrishnakone, “Snake envenomation and protective natural endogenous proteins: a mini review of the recent developments (1991–1997),” Toxicon, vol. 36, no. 11, pp. 1471–1482, 1998.
[50]
L. N. F. Darville, M. E. Merchant, A. Hasan, and K. K. Murray, “Proteome analysis of the leukocytes from the American alligator (Alligator mississippiensis) using mass spectrometry,” Comparative Biochemistry and Physiology Part D, vol. 5, no. 4, pp. 308–316, 2010.
[51]
C. Stegemann, A. Kolobov, Y. F. Leonova et al., “Isolation, purification and de novo sequencing of TBD-1, the first beta-defensin from leukocytes of reptiles,” Proteomics, vol. 9, no. 5, pp. 1364–1373, 2009.
[52]
V. Ignjatovic, C. Lai, R. Summerhayes et al., “Age-related differences in plasma proteins: how plasma proteins change from neonates to adults,” PLoS ONE, vol. 6, no. 2, Article ID e17213, 2011.
[53]
C. W. Vogel, D. C. Fritzinger, B. E. Hew, M. Thorne, and H. Bammert, “Recombinant cobra venom factor,” Molecular Immunology, vol. 41, no. 2-3, pp. 191–199, 2004.
[54]
S. Rehana and R. Manjunatha Kini, “Molecular isoforms of cobra venom factor-like proteins in the venom of Austrelaps superbus,” Toxicon, vol. 50, no. 1, pp. 32–52, 2007.
[55]
P. Hensley, M. C. O'Keefe, and C. J. Spangler, “The effects of metal ions and temperature on the interaction of cobra venom factor and human complement Factor B,” Journal of Biological Chemistry, vol. 261, no. 24, pp. 11038–11044, 1986.
[56]
R. H. Valente, B. Dragulev, J. Perales, J. W. Fox, and G. B. Domont, “BJ46a, a snake venom metalloproteinase inhibitor isolation, characterization, cloning and insights into its mechanism of action,” European Journal of Biochemistry, vol. 268, no. 10, pp. 3042–3052, 2001.
[57]
T. C. Antunes, K. M. Yamashita, K. C. Barbaro, M. Saiki, and M. L. Santoro, “Comparative analysis of newborn and adult Bothrops jararaca snake venoms,” Toxicon, vol. 56, no. 8, pp. 1443–1458, 2010.
[58]
F. R. Mandelbaum and M. R. Assakura, “Antigenic relationship of hemorrhagic factors and proteases isolated from the venoms of three species of Bothrops snakes,” Toxicon, vol. 26, no. 4, pp. 379–385, 1988.
[59]
M. J. I. Paine, H. P. Desmond, R. D. G. Theakston, and J. M. Crampton, “Purification, cloning, and molecular characterization of a high molecular weight hemorrhagic metalloprotease, jararhagin, from Bothrops jararaca venom. Insights into the disintegrin gene family,” Journal of Biological Chemistry, vol. 267, no. 32, pp. 22869–22876, 1992.
[60]
M. I. Estev?o-Costa, B. C. Rocha, M. de Alvarenga Mudado, R. Redondo, G. R. Franco, and C. L. Fortes-Dias, “Prospection, structural analysis and phylogenetic relationships of endogenous γ-phospholipase A2 inhibitors in Brazilian Bothrops snakes (Viperidae, Crotalinae),” Toxicon, vol. 52, no. 1, pp. 122–129, 2008.
[61]
P. G. Hains and K. W. Broady, “Purification and inhibitory profile of phospholipase A2 inhibitors from Australian elapid sera,” Biochemical Journal, vol. 346, no. 1, pp. 139–146, 2000.
[62]
A. Shimada, N. Ohkura, K. Hayashi et al., “Subunit structure and inhibition specificity of α-type phospholipase A2 inhibitor from Protobothrops flavoviridis,” Toxicon, vol. 51, no. 5, pp. 787–796, 2008.
[63]
A. M. Soares, S. Marcussi, R. G. Stábeli et al., “Structural and functional analysis of BmjMIP, a phospholipase A2 myotoxin inhibitor protein from Bothrops moojeni snake plasma,” Biochemical and Biophysical Research Communications, vol. 302, no. 2, pp. 193–200, 2003.