Monogenic autoinflammatory syndromes (MAISs) are caused by innate immune system dysregulation leading to aberrant inflammasome activation and episodes of fever and involvement of skin, serous membranes, eyes, joints, gastrointestinal tract, and nervous system, predominantly with a childhood onset. To date, there are twelve known MAISs: familial Mediterranean fever, tumor necrosis factor receptor-associated periodic syndrome, familial cold urticaria syndrome, Muckle-Wells syndrome, CINCA syndrome, mevalonate kinase deficiency, NLRP12-associated autoinflammatory disorder, Blau syndrome, early-onset sarcoidosis, PAPA syndrome, Majeed syndrome, and deficiency of the interleukin-1 receptor antagonist. Each of these conditions may manifest itself with more or less severe inflammatory symptoms of variable duration and frequency, associated with findings of increased inflammatory parameters in laboratory investigation. The purpose of this paper is to describe the main genetic, clinical, and therapeutic aspects of MAISs and their most recent classification with the ultimate goal of increasing awareness of autoinflammation among various internal medicine specialists. 1. Introduction In the recent years, the identification of genes involved in the modulation of inflammatory and apoptotic processes and the improved understanding of mechanisms linked to the aberrant activation of the inflammasome, amultiprotein intracytoplasmatic scaffold complex synthesizing the biologically active interleukin- (IL-1), the prototypic master cytokine affecting nearly all cell types, have allowed the delineation of a new group of diseases called “monogenic autoinflammatory syndromes (MAISs)” [1]. From the etiopathogenetic point of view, in spite of the heterogeneity of genes responsible for the various MAISs (Table 1), the inflammasome represents an ideal point of convergence of most of these diseases, that is, the cell structure crucial to the regulation of innate immunity: its proper assembly allows for regular activation of caspase-1 and physiological production of proinflammatory cytokines, in primis IL-1β, necessary to respond to a heap of different danger signals, as bacterial peptidoglycans, genotoxic stress, and crystals. In the pathogenesis of many MAISs, the erroneous assembly of the inflammasome leads to an exaggerated conversion of pro-IL-1β to its active form and subsequent disproportionate overwhelming inflammatory response [2]. Table 1: Classification of the monogenic autoinflammatory syndromes. The term “autoinflammatory,” used in contrast to the term “autoimmune,”
References
[1]
S. L. Masters, A. Simon, I. Aksentijevich, and D. L. Kastner, “Horror autoinflammaticus: the molecular pathophysiology of autoinflammatory disease,” Annual Review of Immunology, vol. 27, pp. 621–668, 2009.
[2]
M. Lamkanfi and V. M. Dixit, “Inflammasomes: guardians of cytosolic sanctity,” Immunological Reviews, vol. 227, no. 1, pp. 95–105, 2009.
[3]
D. Rigante, B. Frediani, M. Galeazzi, and L. Cantarini, “From the Mediterranean to the sea of Japan: the transcontinental odyssey of autoinflammatory diseases,” BioMed Research International, vol. 2013, Article ID 485103, 8 pages, 2013.
[4]
M. Lamkanfi and V. M. Dixit, “Inflammasomes and their roles in health and disease,” Annual Review of Cell and Developmental Biology, vol. 28, pp. 137–161, 2012.
[5]
D. Rigante, “The fresco of autoinflammatory diseases from the pediatric perspective,” Autoimmunity Reviews, vol. 11, no. 5, pp. 348–356, 2012.
[6]
L. Cantarini, D. Rigante, M. G. Brizi et al., “The laboratory approach in the diagnosis of systemic autoinflammatory diseases,” Reumatismo, vol. 63, no. 2, pp. 101–110, 2011.
[7]
L. Cantarini, P. L. Capecchi, O. M. Lucherini, F. Laghi Pasini, and M. Galeazzi, “Familial Mediterranean fever diagnosed in an elderly patient,” Clinical and Experimental Rheumatology, vol. 28, no. 4, p. S91, 2010.
[8]
M. Sayarlioglu, A. Cefle, M. Inanc et al., “Characteristics of patients with adult-onset familial Mediterranean fever in Turkey: analysis of 401 cases,” International Journal of Clinical Practice, vol. 59, no. 2, pp. 202–205, 2005.
[9]
L. Cantarini, O. M. Lucherini, F. Iacoponi et al., “Development and preliminary validation of a diagnostic score for identifying patients affected with adult-onset autoinflammatory disorders,” International journal of immunopathology and pharmacology, vol. 23, no. 4, pp. 1133–1141, 2010.
[10]
L. Cantarini, O. M. Lucherini, F. Iacoponi et al., “Development and preliminary validation of a diagnostic score for identifying patients affected with adult-onset autoinflammatory disorders,” International journal of immunopathology and pharmacology, vol. 23, no. 4, pp. 1133–1141, 2010.
[11]
L. Cantarini, F. Iacoponi, O. M. Lucherini et al., “Validation of a diagnostic score for the diagnosis of autoinflammatory diseases in adults,” International Journal of Immunopathology and Pharmacology, vol. 24, no. 3, pp. 695–702, 2011.
[12]
L. Obici and G. Merlini, “Amyloidosis in autoinflammatory syndromes,” Autoimmun, vol. 12, no. 1, pp. 14–17, 2012.
[13]
D. Rigante, I. La Torraca, L. Avallone, A. L. Pugliese, S. Gaspari, and A. Stabile, “The pharmacologic basis of treatment with colchicine in children with familial Mediterranean fever,” European Review for Medical and Pharmacological Sciences, vol. 10, no. 4, pp. 173–178, 2006.
[14]
H. N. Ter, H. Lachmann, S. ?zen, P. Woo, Y. Uziel, C. Modesto, et al., “Treatment of autoinflammatory diseases: results from the Eurofever Registry and a literature review,” Annals of the Rheumatic Diseases, vol. 72, no. 5, pp. 678–685, 2013.
[15]
M. Lidar and A. Livneh, “Familial mediterranean fever: clinical, molecular and management advancements,” Netherlands Journal of Medicine, vol. 65, no. 9, pp. 318–324, 2007.
[16]
F. Milhavet, L. Cuisset, H. M. Hoffman et al., “The infevers autoinflammatory mutation online registry: update with new genes and functions,” Human Mutation, vol. 29, no. 6, pp. 803–808, 2008.
[17]
French FMF Consortium, “A candidate gene for familial Mediterranean fever,” Nature Genetics, vol. 17, pp. 25–31, 1997.
[18]
I. Aksentijevich, M. Centola, Z. Deng et al., “Ancient missense mutations in a new member of the RoRet gene family are likely to cause familial Mediterranean fever,” Cell, vol. 90, no. 4, pp. 797–807, 1997.
[19]
S. Grandemange, I. Aksentijevich, I. Jeru, A. Gul, and I. Touitou, “The regulation of MEFV expression and its role in health and familial Mediterranean fever,” Genes and Immunity, vol. 12, no. 7, pp. 497–503, 2011.
[20]
J. J. Chae, G. Wood, K. Richard et al., “The Familial Mediterranean fever protein, pyrin, is cleaved by caspase-1 and activates NF-κB through its N-terminal fragment,” Blood, vol. 112, no. 5, pp. 1794–1803, 2008.
[21]
E. Ben-Chetrit and I. Touitou, “Familial mediterranean fever in the world,” Arthritis Care and Research, vol. 61, no. 10, pp. 1447–1453, 2009.
[22]
Y. Berkun, E. Eisenstein, and E. Ben-Chetrit, “FMF—clinical features, new treatments and the role of genetic modifiers: a critical digest of the 2010–2012 literature,” Clinical and Experimental Rheumatology, vol. 30, pp. S90–S95, 2012.
[23]
D. Camus, Y. Shinar, S. Aamar et al., “'Silent' carriage of two familial Mediterranean fever gene mutations in large families with only a single identified patient,” Clinical Genetics, vol. 82, pp. 288–291, 2012.
[24]
M. Lidar, M. Yaqubov, N. Zaks, S. Ben-Horin, P. Langevitz, and A. Livneh, “The prodrome: a prominent yet overlooked pre-attack manifestation of familial Mediterranean fever,” Journal of Rheumatology, vol. 33, no. 6, pp. 1089–1092, 2006.
[25]
H. A. Majeed, H. M. Shahin, and K. Ghandour, “The acute scrotum in Arab children with familial Mediterranean fever,” Pediatric Surgery International, vol. 16, no. 1-2, pp. 72–74, 2000.
[26]
S. Radakovic, G. Holzer, and A. Tanew, “Erysipelas-like erythema as a cutaneous sign of familial Mediterranean fever: a case report and review of the histopathologic findings,” Journal of the American Academy of Dermatology, vol. 68, no. 2, pp. e61–e63, 2013.
[27]
S. Ozen, E. Demirkaya, G. Amaryan, I. Koné-Paut, A. Polat, P. Woo, et al., “Results from a multicentre international registry of familial Mediterranean fever: impact of environment on the expression of a monogenic disease in children,” Annals of the Rheumatic Diseases. In press.
[28]
K. Senel, M. A. Melikoglu, T. Baykal, M. Melikoglu, A. Erdal, and M. Ugur, “Protracted febrile myalgia syndrome in familial Mediterranean fever,” Modern Rheumatology, vol. 20, no. 4, pp. 410–412, 2010.
[29]
I. Karachaliou, G. Karachalios, A. Charalabopoulos, and K. Charalabopoulos, “Meningitis associated with familial Mediterranean fever,” International Journal of Clinical Practice, no. 147, pp. 60–61, 2005.
[30]
S. Akar, O. Soysal, A. Balci, D. Solmaz, V. Gerdan, F. Onen, et al., “High prevalence of spondyloarthritis and ankylosing spondylitis among familial Mediterranean fever patients and their first-degree relatives: further evidence for the connection,” Arthritis Research & Therapy, vol. 15, p. R21, 2013.
[31]
K. Migita, S. Abiru, O. Sasaki, T. Miyashita, Y. Izumi, A. Nishino, et al., “Coexistence of familial Mediterranean fever and rheumatoid arthritis,” Modern Rheumatology, 2012.
[32]
M. Matsuda, D. Kishida, A. Tsuchiya-Suzuki et al., “Periodic peritonitis due to familial mediterranean fever in a patient with systemic lupus erythematosus,” Internal Medicine, vol. 49, no. 20, pp. 2259–2262, 2010.
[33]
K. Aksu and G. Keser, “Coexistence of vasculitides with Familial Mediterranean Fever,” Rheumatology International, vol. 31, no. 10, pp. 1263–1274, 2011.
[34]
J. Samuels, I. Aksentijevich, Y. Torosyan et al., “Familial Mediterranean fever at the millennium clinical spectrum, ancient mutations, and a survey of 100 American referrals to the national institutes of health,” Medicine, vol. 77, no. 4, pp. 268–297, 1998.
[35]
D. Rigante and E. Capoluongo, “The plodding diagnosis of monogenic autoinflammatory diseases in childhood: from the clinical scenery to laboratory investigation,” Clinical Chemistry and Laboratory Medicine, vol. 49, no. 5, pp. 783–791, 2011.
[36]
A. Altuno?lu, Erten ?, M. B. Canoz, A. Yuksel, G. G. Ceylan, S. Balci, et al., “Phenotype 2 familial mediterranean fever: evaluation of 22 case series and review of the literature on phenotype 2 FMF,” Renal Failure, vol. 35, no. 2, pp. 226–230, 2013.
[37]
A. Blum, J. Gafni, E. Sohar, S. Shibolet, and H. Heller, “Amyloidosis as the sole manifestation of familial Mediterranean fever (FMF). Further evidence of its genetic nature,” Annals of Internal Medicine, vol. 57, pp. 795–799, 1962.
[38]
D. Zemer, A. Livneh, M. Pras, and E. Sohar, “Familial Mediterranean fever in the colchicine era: the fate of one family,” American Journal of Medical Genetics, vol. 45, no. 3, pp. 340–344, 1993.
[39]
A. Kogan, Y. Shinar, M. Lidar et al., “Common MEFV mutations among Jewish ethnic groups in Israel: High frequency of carrier and phenotype III states and absence of a perceptible biological advantage for the carrier state,” American Journal of Medical Genetics, vol. 102, no. 3, pp. 272–276, 2001.
[40]
A. Livneh, P. Langevitz, D. Zemer et al., “Criteria for the diagnosis of familial Mediterranean fever,” Arthritis and Rheumatism, vol. 40, no. 10, pp. 1879–1885, 1997.
[41]
I. Koné-Paut, V. Hentgen, S. Guillaume-Czitrom, S. Compeyrot-Lacassagne, T.-A. Tran, and I. Touitou, “The clinical spectrum of 94 patients carrying a single mutated MEFV allele,” Rheumatology, vol. 48, no. 7, pp. 840–842, 2009.
[42]
D. Rigante, I. La Torraca, V. Ansuini, A. Compagnone, A. Sallì, and A. Stabile, “The multi-face expression of familial mediterranean fever in the child,” European Review for Medical and Pharmacological Sciences, vol. 10, no. 4, pp. 163–171, 2006.
[43]
S. E. Goldfinger, “Colchicine for familial Mediterranean fever,” The New England Journal of Medicine, vol. 287, no. 25, p. 1302, 1972.
[44]
A. Bakkaloglu, “Familial Mediterranean fever,” Pediatric Nephrology, vol. 18, no. 9, pp. 853–859, 2003.
[45]
A. Aybal Kutlugun, T. Yildirim, M. Altindal, M. Arici, ü. Yasavul, and ?. Turgan, “AA type renal amyloidosis secondary to FMF: a long-term follow-up in two patients,” Renal Failure, vol. 32, no. 10, pp. 1230–1232, 2010.
[46]
N. Ozkaya and F. Yalcinkaya, “Colchicine treatment in children with familial Mediterranean fever,” Clinical Rheumatology, vol. 22, no. 4-5, pp. 314–317, 2003.
[47]
D. Zemer, M. Pras, and E. Sohar, “Colchicine in the prevention and treatment of the amyloidosis of familial Mediterranean fever,” The New England Journal of Medicine, vol. 314, no. 16, pp. 1001–1005, 1986.
[48]
M. Lidar, J.-M. Scherrmann, Y. Shinar et al., “Colchicine nonresponsiveness in Familial Mediterranean fever: clinical, genetic, pharmacokinetic, and socioeconomic characterization,” Seminars in Arthritis and Rheumatism, vol. 33, no. 4, pp. 273–282, 2004.
[49]
C. Cerquaglia, M. Diaco, G. Nucera, M. La Regina, M. Montalto, and R. Manna, “Pharmacological and clinical basis of treatment of Familial Mediterranean Fever (FMF) with colchicine or analogues: an update,” Current Drug Targets, vol. 4, no. 1, pp. 117–124, 2005.
[50]
M. A. Ozturk, M. Kanbay, B. Kasapoglu et al., “Therapeutic approach to familial Mediterranean fever: a review update,” Clinical and Experimental Rheumatology, vol. 29, no. 4, pp. S77–S86, 2011.
[51]
E. Erken, H. T. E. Ozer, B. Bozkurt, R. Gunesacar, E. G. Erken, and S. Dinkci, “Early suppression of familial Mediterranean fever attacks by single medium dose methyl-prednisolone infusion,” Joint Bone Spine, vol. 75, no. 3, pp. 370–372, 2008.
[52]
P. Langevitz, D. Zemer, and A. Livneh, “Protracted febrile myalgia in patients with familial mediterranean fever,” Journal of Rheumatology, vol. 21, no. 9, pp. 1708–1709, 1994.
[53]
A. Soriano, E. Verecchia, A. Afeltra, R. Landolfi, and R. Manna, “IL-1β biological treatment of Familial Mediterranean fever,” Clinical Reviews in Allergy & Immunology, vol. 45, no. 1, pp. 117–130, 2013.
[54]
S. Ozgocmen and O. Akgul, “Anti-TNF agents in Familial Mediterranean fever: report of three cases and review of the literature,” Modern Rheumatology, vol. 21, no. 6, pp. 684–690, 2011.
[55]
M. F. McDermott, I. Aksentijevich, J. Galon et al., “Germline mutations in the extracellular domains of the 55 kDa TNF receptor, TNFR1, define a family of dominantly inherited autoinflammatory syndromes,” Cell, vol. 97, no. 1, pp. 133–144, 1999.
[56]
I. Aksentijevich, J. Galon, M. Soares et al., “The tumor-necrosis-factor receptor-associated periodic syndrome: new mutations in TNFRSF1A, ancestral origins, genotype-phenotype studies, and evidence for further genetic heterogeneity of periodic fevers,” American Journal of Human Genetics, vol. 69, no. 2, pp. 301–314, 2001.
[57]
F. K.-M. Chan, H. J. Chun, L. Zheng, R. M. Siegel, K. L. Bui, and M. J. Lenardo, “A domain in TNF receptors that mediates ligand-independent receptor assembty and signaling,” Science, vol. 288, no. 5475, pp. 2351–2354, 2000.
[58]
S. L. Rebelo, S. E. Bainbridge, M. R. Amel-Kashipaz et al., “Modeling of tumor necrosis factor receptor superfamily 1A mutants associated with tumor necrosis factor receptor-associated periodic syndrome indicates misfolding consistent with abnormal function,” Arthritis and Rheumatism, vol. 54, no. 8, pp. 2674–2687, 2006.
[59]
N. Ravet, S. Rouaghe, C. Dodé et al., “Clinical significance of P46L and R92Q substitutions in the tumour necrosis factor superfamily 1A gene,” Annals of the Rheumatic Diseases, vol. 65, no. 9, pp. 1158–1162, 2006.
[60]
D. Tchernitchko, M. Chiminqgi, F. Galactéros et al., “Unexpected high frequency of P46L TNFRSF1A allele in sub-Sahara West African populations,” European Journal of Human Genetics, vol. 13, no. 4, pp. 513–515, 2005.
[61]
A. Simon, H. Park, R. Maddipati et al., “Concerted action of wild-type and mutant TNF receptors enhances inflammation in TNF receptor 1-associated periodic fever syndrome,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 21, pp. 9801–9806, 2010.
[62]
L. Cantarini, O. M. Lucherini, A. Brucato et al., “Clues to detect tumor necrosis factor receptor-associated periodic syndrome (TRAPS) among patients with idiopathic recurrent acute pericarditis: results of a multicentre study,” Clinical Research in Cardiology, vol. 101, pp. 525–531, 2012.
[63]
L. Cantarini, O. M. Lucherini, C. T. Baldari, F. Laghi Pasini, and M. Galeazzi, “Familial clustering of recurrent pericarditis may disclose tumour necrosis factor receptor-associated periodic syndrome,” Clinical and Experimental Rheumatology, vol. 28, no. 3, pp. 405–407, 2010.
[64]
L. Cantarini, O. M. Lucherini, R. Cimaz et al., “Idiopathic recurrent pericarditis refractory to colchicine treatment can reveal tumor necrosis factor receptor-associated periodic syndrome,” International Journal of Immunopathology and Pharmacology, vol. 22, no. 4, pp. 1051–1058, 2009.
[65]
L. Cantarini, O. M. Lucherini, R. Cimaz, C. T. Baldari, F. Laghi Pasini, and M. Galeazzi, “Sacroileitis and pericarditis: atypical presentation of tumour necrosis factor receptor-associated periodic syndrome and response to etanercept therapy,” Clinical and Experimental Rheumatology, vol. 28, no. 2, pp. 290–291, 2010.
[66]
A. C. Bulua, A. Simon, R. Maddipati et al., “Mitochondrial reactive oxygen species promote production of proinflammatory cytokines and are elevated in TNFR1-associated periodic syndrome (TRAPS),” Journal of Experimental Medicine, vol. 208, no. 3, pp. 519–533, 2011.
[67]
L. J. Dickie, A. M. Aziz, S. Savic, O. M. Lucherini, L. Cantarini, J. Geiler, et al., “Involvement of X-box binding protein 1 and reactive oxygen species pathways in the pathogenesis of tumour necrosis factor receptor-associated periodic syndrome,” Annals of the Rheumatic Diseases, vol. 71, no. 12, pp. 2035–2043, 2012.
[68]
E. Aganna, L. Hammond, P. N. Hawkins et al., “Heterogeneity among patients with tumor necrosis factor receptor-associated periodic syndrome phenotypes,” Arthritis and Rheumatism, vol. 48, no. 9, pp. 2632–2644, 2003.
[69]
L. Cantarini, O. M. Lucherini, I. Muscari, B. Frediani, M. Galeazzi, M. G. Brizi, et al., “Tumour necrosis factor receptor-associated periodic syndrome (TRAPS): state of the art and future perspectives,” Autoimmunity Reviews, vol. 12, no. 1, pp. 38–43, 2012.
[70]
R. Schmaltz, T. Vogt, and J. Reichrath, “Skin manifestations in tumor necrosis factor receptor-associated periodic syndrome (TRAPS),” Dermato-Endocrinology, vol. 2, no. 1, pp. 26–29, 2010.
[71]
D. Rigante and L. Cantarini, “Monogenic autoinflammatory syndromes at a dermatological level,” Archives of Dermatological Research, vol. 303, no. 6, pp. 375–380, 2011.
[72]
K. M. Hull, E. Drewe, I. Aksentijevich et al., “The TNF receptor-associated periodic syndrome (TRAPS): emerging concepts of an autoinflammatory disorder,” Medicine, vol. 81, no. 5, pp. 349–368, 2002.
[73]
C. Dodé, M. André, T. Bienvenu, P. Hausfater, P. Pêcheux, J. Bienvenu, et al., “The enlarging clinical, genetic, and population spectrum of tumor necrosis factor receptor-associated periodic syndrome,” Arthritis & Rheumatism, vol. 46, no. 8, pp. 2181–2188, 2002.
[74]
D. Rigante, L. Cantarini, M. Imazio et al., “Autoinflammatory diseases and cardiovascular manifestations,” Annals of Medicine, vol. 43, no. 5, pp. 341–346, 2011.
[75]
C. Luca, I. Massimo, B. Antonio, L. O. Maria, and G. Mauro, “Innate versus acquired immune response in the pathogenesis of recurrent idiopathic pericarditis,” Autoimmunity Reviews, vol. 9, no. 6, pp. 436–440, 2010.
[76]
S. Trost and C. D. Rosé, “Myocarditis and sacroiliitis: 2 previously unrecognized manifestations of tumor necrosis factor receptor associated periodic syndrome,” Journal of Rheumatology, vol. 32, no. 1, pp. 175–177, 2005.
[77]
L. Cantarini, O. M. Lucherini, R. Cimaz, and M. Galeazzi, “Recurrent pericarditis caused by a rare mutation in the TNFRSF1A gene and with excellent response to anakinra treatment,” Clinical and Experimental Rheumatology, vol. 28, no. 5, p. 802, 2010.
[78]
L. Cantarini, D. Rigante, O. M. Lucherini et al., “Role of etanercept in the treatment of tumor necrosis factor receptor-associated periodic syndrome: personal experience and review of the literature,” International Journal of Immunopathology and Pharmacology, vol. 23, no. 3, pp. 701–707, 2010.
[79]
S. Stojanov, C. Dejaco, P. Lohse et al., “Clinical and functional characterisation of a novel TNFRSF1A c.605T>A/V173D cleavage site mutation associated with tumour necrosis factor receptor-associated periodic fever syndrome (TRAPS), cardiovascular complications and excellent response to etanercept treatment,” Annals of the Rheumatic Diseases, vol. 67, no. 9, pp. 1292–1298, 2008.
[80]
M. Gattorno, M. A. Pelagatti, A. Meini et al., “Persistent efficacy of anakinra in patients with tumor necrosis factor receptor-associated periodic syndrome,” Arthritis and Rheumatism, vol. 58, no. 5, pp. 1516–1520, 2008.
[81]
E. Drewe, R. J. Powell, and E. M. Mcdermott, “Comment on: failure of anti-TNF therapy in TNF receptor 1-associated periodic syndrome (TRAPS),” Rheumatology, vol. 46, no. 12, pp. 1865–1866, 2007.
[82]
B. Nedjai, G. A. Hitman, N. Quillinan et al., “Proinflammatory action of the antiinflammatory drug infliximab in tumor necrosis factor receptor-associated periodic syndrome,” Arthritis and Rheumatism, vol. 60, no. 2, pp. 619–625, 2009.
[83]
L. Obici, A. Meini, M. Cattalini et al., “Favourable and sustained response to anakinra in tumour necrosis factor receptor-associated periodic syndrome (TRAPS) with or without AA amyloidosis,” Annals of the Rheumatic Diseases, vol. 70, no. 8, pp. 1511–1512, 2011.
[84]
M. G. Brizi, M. Galeazzi, O. M. Lucherini, L. Cantarini, and R. Cimaz, “Successful treatment of tumor necrosis factor receptor-associated periodic syndrome with canakinumab,” Annals of Internal Medicine, vol. 156, no. 12, pp. 907–908, 2012.
[85]
P. M. Vaitla, P. M. Radford, P. J. Tighe et al., “Role of interleukin-6 in a patient with tumor necrosis factor receptor-associated periodic syndrome,” Arthritis and Rheumatism, vol. 63, no. 4, pp. 1151–1155, 2011.
[86]
L. Cantarini, O. M. Lucherini, B. Frediani et al., “Bridging the gap between the clinician and the patient with cryopyrin-associated periodic syndromes,” International Journal of Immunopathology and Pharmacology, vol. 24, no. 4, pp. 827–836, 2011.
[87]
L. Agostini, F. Martinon, K. Burns, M. F. McDermott, P. N. Hawkins, and J. Tschopp, “NALP3 forms an IL-1β-processing inflammasome with increased activity in Muckle-Wells autoinflammatory disorder,” Immunity, vol. 20, no. 3, pp. 319–325, 2004.
[88]
T. Miyamae, “Cryopyrin-associated periodic syndromes: diagnosis and management,” Pediatric Drugs, vol. 14, no. 2, pp. 109–117, 2012.
[89]
H. M. Hoffman, A. A. Wanderer, and D. H. Broide, “Familial cold autoinflammatory syndrome: phenotype and genotype of an autosomal dominant periodic fever,” Journal of Allergy and Clinical Immunology, vol. 108, no. 4, pp. 615–620, 2001.
[90]
A. Vitale, O. M. Lucherini, M. Galeazzi, B. Frediani, and L. Cantarini, “Long-term clinical course of patients carrying the Q703K mutation in the NLRP3 gene: a case series,” Clinical and Experimental Rheumatology, vol. 30, pp. 943–946, 2012.
[91]
T. J. Muckle and W. Wellsm, “Urticaria, deafness, and amyloidosis: a new heredo-familial syndrome,” The Quarterly journal of medicine, vol. 31, pp. 235–248, 1962.
[92]
T. Lequerré, O. Vittecoq, P. Saugier-Veber et al., “A cryopyrin-associated periodic syndrome with joint destruction,” Rheumatology, vol. 46, no. 4, pp. 709–714, 2007.
[93]
J. Lorber, “Syndrome for diagnosis: dwarfing, persistently open fontanelle; recurrent meningitis; recurrent subdural effusions with temporary alternate-sided hemiplegia; high-tone deafness; visual defect with pseudopapilloedema; slowing intellectual development; recurrent acute polyarthritis; erythema marginatum, splenomegaly and iron-resistant hypochromic anaemia,” Proceedings of the Royal Society of Medicine, vol. 66, no. 11, pp. 1070–1071, 1973.
[94]
A.-M. Prieur, “A recently recognised chronic inflammatory disease of early onset characterised by the triad of rash, central nervous system involvement and arthropathy,” Clinical and Experimental Rheumatology, vol. 19, no. 1, pp. 103–106, 2001.
[95]
S. C. Hill, M. Namde, A. Dwyer, A. Poznanski, S. Canna, and R. Goldbach-Mansky, “Arthropathy of neonatal onset multisystem inflammatory disease (NOMID/CINCA),” Pediatric Radiology, vol. 37, no. 2, pp. 145–152, 2007.
[96]
J. L. Kitley, H. J. Lachmann, A. Pinto, and L. Ginsberg, “Neurologic manifestations of the cryopyrin-associated periodic syndrome,” Neurology, vol. 74, no. 16, pp. 1267–1270, 2010.
[97]
D. Rigante, V. Ansuini, M. Caldarelli, B. Bertoni, I. La Torraca, and A. Stabile, “Hydrocephalus in CINCA syndrome treated with anakinra,” Child's Nervous System, vol. 22, no. 4, pp. 334–337, 2006.
[98]
R. Goldbach-Mansky, N. J. Dailey, S. W. Canna et al., “Neonatal-onset multisystem inflammatory disease responsive to interleukin-1β inhibition,” The New England Journal of Medicine, vol. 355, no. 6, pp. 581–592, 2006.
[99]
H. J. Lachmann, I. Kone-Paut, J. B. Kuemmerle-Deschner et al., “Use of canakinumab in the cryopyrin-associated periodic syndrome,” The New England Journal of Medicine, vol. 360, no. 23, pp. 2416–2425, 2009.
[100]
J. B. Kuemmerle-Deschner, E. Hachulla, R. Cartwright et al., “Two-year results from an open-label, multicentre, phase III study evaluating the safety and efficacy of canakinumab in patients with cryopyrin-associated periodic syndrome across different severity phenotypes,” Annals of the Rheumatic Diseases, vol. 70, no. 12, pp. 2095–2102, 2011.
[101]
H. M. Hoffman, M. L. Throne, N. J. Amar et al., “Efficacy and safety of rilonacept (Interleukin-1 Trap) in patients with cryopyrin-associated periodic syndromes: results from two sequential placebo-controlled studies,” Arthritis and Rheumatism, vol. 58, no. 8, pp. 2443–2452, 2008.
[102]
R. Berger, G. P. A. Smit, and H. Schierbeek, “Mevalonic aciduria: an inborn error of cholesterol biosynthesis?” Clinica Chimica Acta, vol. 152, no. 1-2, pp. 219–222, 1985.
[103]
J. C. H. Van Der Hilst, E. J. Bodar, K. S. Barron et al., “Long-term follow-up, clinical features, and quality of life in a series of 103 patients with hyperimmunoglobulinemia D syndrome,” Medicine, vol. 87, no. 6, pp. 301–310, 2008.
[104]
S. M. Houten, R. J. A. Wanders, and H. R. Waterham, “Biochemical and genetic aspects of mevalonate kinase and its deficiency,” Biochimica et Biophysica Acta, vol. 1529, no. 1–3, pp. 19–32, 2000.
[105]
O. Steichen, J. Van Der Hilst, A. Simon, L. Cuisset, and G. Grateau, “A clinical criterion to exclude the hyperimmunoglobulin D syndrome (mild mevalonate kinase deficiency) in patients with recurrent fever,” Journal of Rheumatology, vol. 36, no. 8, pp. 1677–1681, 2009.
[106]
C. Bruscas Izu, M. Medrano San Ildefonso, and L. Simon, “Hypergammaglobulinemia D syndrome,” Anales de Medicina Interna, vol. 17, pp. 213–216, 2000.
[107]
D. Rigante, E. Capoluongo, B. Bertoni et al., “First report of macrophage activation syndrome in hyperimmunoglobulinemia D with periodic fever syndrome,” Arthritis and Rheumatism, vol. 56, no. 2, pp. 658–661, 2007.
[108]
D. Haas and G. F. Hoffmann, “Mevalonate kinase deficiencies: from mevalonic aciduria to hyperimmunoglobulinemia D syndrome,” Orphanet Journal of Rare Diseases, vol. 1, no. 1, article 13, 2006.
[109]
B. Bader-Meunier, B. Florkin, J. Sibilia, C. Acquaviva, E. Hachulla, G. Grateau, et al., “Mevalonate kinase deficiency: a survey of 50 patients,” Pediatrics, vol. 128, pp. e152–e159, 2011.
[110]
A. Vitale, D. Rigante, O. M. Lucherini, F. Caso, I. Muscari, F. Magnotti, et al., “Biological treatments: new weapons in the management of monogenic autoinflammatory disorders,” Mediators of Inflammation, vol. 2013, Article ID 939847, 16 pages, 2013.
[111]
A. Simon, E. Drewe, J. W. M. Van Der Meer et al., “Simvastatin treatment for inflammatory attacks of the hyperimmunoglobulinemia D and periodic fever syndrome,” Clinical Pharmacology and Therapeutics, vol. 75, no. 5, pp. 476–483, 2004.
[112]
C. Galeotti, U. Meinzer, P. Quartier, L. Rossi-Semerano, B. Bader-Meunier, P. Pillet, et al., “Efficacy of interleukin-1-targeting drugs in mevalonate kinase deficiency,” Rheumatology, vol. 51, no. 10, pp. 1855–1859, 2012.
[113]
R. Topalo?lu, N. A. Ayaz, H. R. Waterham, A. Yüce, F. Gumruk, and ?. Sanal, “Hyperimmunoglobulinemia D and periodic fever syndrome; treatment with etanercept and follow-up,” Clinical Rheumatology, vol. 27, no. 10, pp. 1317–1320, 2008.
[114]
I. Jéru, P. Duquesnoy, T. Fernandes-Alnemri et al., “Mutations in NALP12 cause hereditary periodic fever syndromes,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 5, pp. 1614–1619, 2008.
[115]
S. Borghini, S. Tassi, S. Chiesa et al., “Clinical presentation and pathogenesis of cold-induced autoinflammatory disease in a family with recurrence of an NLRP12 mutation,” Arthritis and Rheumatism, vol. 63, no. 3, pp. 830–839, 2011.
[116]
I. Jéru, V. Hentgen, S. Normand et al., “Role of interleukin-1β in NLRP12-associated autoinflammatory disorders and resistance to anti-interleukin-1 therapy,” Arthritis and Rheumatism, vol. 63, no. 7, pp. 2142–2148, 2011.
[117]
E. B. Blau, “Familial granulomatous arthritis, iritis, and rash,” Journal of Pediatrics, vol. 107, no. 5, pp. 689–693, 1985.
[118]
J. D. Ohmen, H.-Y. Yang, K. K. Yamamoto et al., “Susceptibility locus for inflammatory bowel disease on chromosome 16 has a role in Crohn's disease, but not in ulcerative colitis,” Human Molecular Genetics, vol. 5, no. 10, pp. 1679–1683, 1996.
[119]
C. Miceli-Richard, S. Lesage, M. Rybojad et al., “CARD15 mutations in Blau syndrome,” Nature Genetics, vol. 29, no. 1, pp. 19–20, 2001.
[120]
S. E. Girardin, I. G. Boneca, J. Viala et al., “Nod2 is a general sensor of peptidoglycan through muramyl dipeptide (MDP) detection,” The Journal of Biological Chemistry, vol. 278, no. 11, pp. 8869–8872, 2003.
[121]
I. Okafuji, R. Nishikomori, N. Kanazawa et al., “Role of the NOD2 genotype in the clinical phenotype of Blau syndrome and early-onset sarcoidosis,” Arthritis and Rheumatism, vol. 60, no. 1, pp. 242–250, 2009.
[122]
C. D. Rosé, J. I. Aróstegui, T. M. Martin et al., “NOD2-associated pediatric granulomatous arthritis, an expanding phenotype: study of an international registry and a national cohort in Spain,” Arthritis and Rheumatism, vol. 60, no. 6, pp. 1797–1803, 2009.
[123]
C. D. Rosé, T. M. Martin, and C. H. Wouters, “Blau syndrome revisited,” Current Opinion in Rheumatology, vol. 23, no. 5, pp. 411–418, 2011.
[124]
P. Sfriso, F. Caso, S. Tognon, P. Galozzi, A. Gava, and L. Punzi, “Blau syndrome, clinical and genetic aspects.,” Autoimmunity Reviews, vol. 12, no. 1, pp. 44–51, 2012.
[125]
S. Hetherington, “Sarcoidosis in young children,” American Journal of Diseases of Children, vol. 136, no. 1, pp. 13–15, 1982.
[126]
R. Cimaz and B. M. Ansell, “Sarcoidosis in the pediatric age,” Clinical and Experimental Rheumatology, vol. 20, no. 2, pp. 231–237, 2002.
[127]
A. L. Hoffmann, N. Milman, and K.-E. Byg, “Childhood sarcoidosis in Denmark 1979-1994: Incidence, clinical features and laboratory results at presentation in 48 children,” Acta Paediatrica, International Journal of Paediatrics, vol. 93, no. 1, pp. 30–36, 2004.
[128]
N. Kanazawa, I. Okafuji, N. Kambe et al., “Early-onset sarcoidosis and CARD15 mutations with constitutive nuclear factor-κB activation: common genetic etiology with Blau syndrome,” Blood, vol. 105, no. 3, pp. 1195–1197, 2005.
[129]
N. Milman, K. Ursin, E. R?devand, F. C. Nielsen, and T. V. O. Hansen, “A novel mutation in the NOD2 gene associated with Blau syndrome a Norwegian family with four affected members,” Scandinavian Journal of Rheumatology, vol. 38, no. 3, pp. 190–197, 2009.
[130]
L. Punzi, A. Furlan, M. Podswiadek et al., “Clinical and genetic aspects of Blau syndrome: a 25-year follow-up of one family and a literature review,” Autoimmunity Reviews, vol. 8, no. 3, pp. 228–232, 2009.
[131]
P. A. Latkany, D. A. Jabs, J. R. Smith et al., “Multifocal choroiditis in patients with familial juvenile systemic granulomatosis,” American Journal of Ophthalmology, vol. 134, no. 6, pp. 897–904, 2002.
[132]
N. Milman, C. B. Andersen, A. Hansen et al., “Favourable effect of TNF-α inhibitor (infliximab) on Blau syndrome in monozygotic twins with a de novo CARD15 mutation,” APMIS, vol. 114, no. 12, pp. 912–919, 2006.
[133]
V. R. Raiji, M. M. Miller, and L. K. Jung, “Uveitis in Blau syndrome from a de novo mutation of the NOD2/CARD15 gene,” Journal of AAPOS, vol. 15, no. 2, pp. 205–207, 2011.
[134]
G. Simonini, Z. Xu, R. Caputo, C. De Libero, I. Pagnini, V. Pascual, et al., “Clinical and transcriptional response to the long-acting interleukin-1 blocker canakinumab in Blau syndrome-related uveitis,” Arthritis & Rheumatism, vol. 65, no. 2, pp. 513–518, 2013.
[135]
N. M. Llndor, T. M. Arsenault, H. Solomon, C. E. Seidman, and M. T. McEvov, “A new autosomal dominant disorder of pyogenic sterile arthritis, pyoderma gangrenosum, and acne: PAPA syndrome,” Mayo Clinic Proceedings, vol. 72, no. 7, pp. 611–615, 1997.
[136]
C. A. Wise, L. B. Bennett, V. Pascual, J. D. Gillum, and A. M. Bowcock, “Localization of a gene for familial recurrent arthritis,” Arthritis & Rheumatism, vol. 43, pp. 2041–2045, 2000.
[137]
H. B. Yeon, N. M. Lindor, J. G. Seidman, and C. E. Seidman, “Pyogenic arthritis pyoderma gangrenosum, and acne syndrome maps to chromosome 15q,” American Journal of Human Genetics, vol. 66, no. 4, pp. 1443–1448, 2000.
[138]
M. F. McDermott and I. Aksentijevich, “The autoinflammatory syndromes,” Current Opinion in Allergy and Clinical Immunology, vol. 2, no. 6, pp. 511–516, 2002.
[139]
A. P. Demidowich, A. F. Freeman, D. B. Kuhns, I. Aksentijevich, J. I. Gallin, M. L. Turner, et al., “Brief report: genotype, phenotype, and clinical course in five patients with PAPA syndrome (pyogenic sterile arthritis, pyoderma gangrenosum, and acne),” Arthritis & Rheumatism, vol. 64, no. 6, pp. 2022–2027, 2012.
[140]
A. Geusau, N. Mothes-Luksch, H. Nahavandi, W. F. Pickl, C. A. Wise, Z. Pourpak, et al., “Identification of a homozygous PSTPIP1 mutation in a patient with a PAPA-like syndrome responding to canakinumab treatment,” JAMA Dermatology, vol. 149, no. 2, pp. 209–215, 2013.
[141]
N. G. Shoham, M. Centola, E. Mansfield et al., “Pyrin binds the PSTPIP1/CD2BP1 protein, defining familial Mediterranean fever and PAPA syndrome as disorders in the same pathway,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 23, pp. 13501–13506, 2003.
[142]
H. A. Majeed, M. Kalaawi, D. Mohanty et al., “Congenital dyserythropoietic anemia and chronic recurrent multifocal osteomyelitis in three related children and the association with Sweet syndrome in two siblings,” Journal of Pediatrics, vol. 115, no. 5, pp. 730–734, 1989.
[143]
P. J. Ferguson, S. Chen, M. K. Tayeh et al., “Homozygous mutations in LPIN2 are responsible for the syndrome of chronic recurrent multifocal osteomyelitis and congenital dyserythropoietic anaemia (Majeed syndrome),” Journal of Medical Genetics, vol. 42, no. 7, pp. 551–557, 2005.
[144]
Z. S. Al-Mosawi, K. K. Al-Saad, R. Ijadi-Maghsoodi, H. I. El-Shanti, and P. J. Ferguson, “A splice site mutation confirms the role of LPIN2 in Majeed syndrome,” Arthritis and Rheumatism, vol. 56, no. 3, pp. 960–964, 2007.
[145]
T. Herlin, B. Fiirgaard, M. Bjerre, G. Kerndrup, H. Hasle, X. Bing, et al., “Efficacy of anti-IL-1 treatment in Majeed syndrome,” Annals of the Rheumatic Diseases, vol. 72, no. 3, pp. 410–413, 2013.
[146]
I. Aksentijevich, S. L. Masters, P. J. Ferguson et al., “An autoinflammatory disease with deficiency of the interleukin-1-receptor antagonist,” The New England Journal of Medicine, vol. 360, no. 23, pp. 2426–2437, 2009.
[147]
M. Stenerson, K. Dufendach, I. Aksentijevich, J. Brady, J. Austin, and A. M. Reed, “The first reported case of compound heterozygous IL1RN mutations causing deficiency of the interleukin-1 receptor antagonist,” Arthritis and Rheumatism, vol. 63, no. 12, pp. 4018–4022, 2011.
[148]
P. G. Thacker, L. A. Binkovitz, and K. B. Thomas, “Deficiency of interleukin-1-receptor antagonist syndrome: a rare auto-inflammatory condition that mimics multiple classic radiographic findings,” Pediatric Radiology, vol. 42, pp. 495–498, 2012.