Food allergy is an emerging epidemic that affects all age groups, with the highest prevalence rates being reported amongst Western countries such as the United States (US), United Kingdom (UK), and Australia. The development of animal models to test various food allergies has been beneficial in allowing more rapid and extensive investigations into the mechanisms involved in the allergic pathway, such as predicting possible triggers as well as the testing of novel treatments for food allergy. Traditionally, small animal models have been used to characterise immunological pathways, providing the foundation for the development of numerous allergy models. Larger animals also merit consideration as models for food allergy as they are thought to more closely reflect the human allergic state due to their physiology and outbred nature. This paper will discuss the use of animal models for the investigation of the major food allergens; cow's milk, hen's egg, and peanut/other tree nuts, highlight the distinguishing features of each of these models, and provide an overview of how the results from these trials have improved our understanding of these specific allergens and food allergy in general. 1. Introduction In the industrialised nations, food allergy is a growing epidemic affecting all age groups and appearing at any time in life. A marked increase in the incidence of food allergy in young children is of particular concern, with a reported 6–8% of young children and 3-4% of adults having some type of food allergy [1–3]. Comparable to the trends first seen with asthma, countries such as the United States (US), United Kingdom (UK), and Australia have the highest rates of food allergy. In the past decade alone, prevalence rates in the US have increased by at least 18% [4, 5]. Similarly, a recent study in Australia found that more than 10% of a cohort of infants had challenge-proven IgE-mediated food allergy to one of the common allergenic foods (peanut, raw egg, and sesame) [6]. This escalation in the prevalence of food allergies underlies the importance of further research to improve prevention and treatment strategies. Allergic reactions to food can range from mild responses to life-threatening anaphylaxis [7]. These aberrant allergic reactions are principally driven by a T helper type 2 (Th2) immune pathway, as evidenced by high levels of allergen-specific immunoglobulin E (IgE) [8], Th2 polarisation involving inflammatory cells, and cytokines/mediators, and the reported efficacy of therapies that inhibit Th2 immune responses in human subjects [9–12]. There is
References
[1]
S. A. Bock, “Prospective appraisal of complaints of adverse reactions to foods in children during the first 3 years of life,” Pediatrics, vol. 79, no. 5, pp. 683–688, 1987.
[2]
R. S. Gupta, E. E. Springston, M. R. Warrier et al., “The prevalence, severity, and distribution of childhood food allergy in the United States,” Pediatrics, vol. 128, no. 1, pp. e9–e17, 2011.
[3]
H. A. Sampson, “Update on food allergy,” Journal of Allergy and Clinical Immunology, vol. 113, no. 5, pp. 805–819, 2004.
[4]
A. M. Branum and S. L. Lukacs, “Food allergy among children in the United States,” Pediatrics, vol. 124, no. 6, pp. 1549–1555, 2009.
[5]
R. S. Gupta, E. E. Springston, B. Smith, M. R. Warrier, J. Pongracic, and J. L. Holl, “Geographic variability of childhood food allergy in the United States,” Clinical Pediatrics, vol. 51, no. 9, pp. 856–861, 2012.
[6]
N. J. Osborne, J. J. Koplin, P. E. Martin et al., “Prevalence of challenge-proven IgE-mediated food allergy using population-based sampling and predetermined challenge criteria in infants,” Journal of Allergy and Clinical Immunology, vol. 127, no. 3, pp. 668–676, 2011.
[7]
J. A. Boyce, A. Assa'ad, A. W. Burks et al., “Guidelines for the diagnosis and management of food allergy in the United States: report of the NIAID-sponsored expert panel,” Journal of Allergy and Clinical Immunology, vol. 126, no. 6, pp. S1–S58, 2010.
[8]
M. Wills-Karp, A. Nathan, K. Page, and C. L. Karp, “New insights into innate immune mechanisms underlying allergenicity,” Mucosal Immunology, vol. 3, no. 2, pp. 104–110, 2010.
[9]
B. Ruiter and W. G. Shreffler, “The role of dendritic cells in food allergy,” Journal of Allergy and Clinical Immunology, vol. 129, no. 4, pp. 921–928, 2012.
[10]
K. Otsu and S. C. Dreskin, “Peanut allergy: an evolving clinical challenge,” Discovery Medicine, vol. 12, no. 65, pp. 319–328, 2011.
[11]
H. J. Gould, B. J. Sutton, A. J. Beavil et al., “The biology of IgE and the basis of allergic disease,” Annual Review of Immunology, vol. 21, pp. 579–628, 2003.
[12]
R. M. Helm, R. W. Ermel, and O. L. Frick, “Nonmurine animal models of food allergy,” Environmental Health Perspectives, vol. 111, no. 2, pp. 239–244, 2003.
[13]
B. Ruiter and W. G. Shreffler, “Innate immunostimulatory properties of allergens and their relevance to food allergy,” Seminars in Immunopathology, vol. 34, no. 5, pp. 617–632, 2012.
[14]
X. M. Li, B. H. Schofield, C. K. Huang, G. I. Kleiner, and H. A. Sampson, “A murine model of IgE-mediated cow's milk hypersensitivity,” Journal of Allergy and Clinical Immunology, vol. 103, no. 2, pp. 206–214, 1999.
[15]
V. Morafo, K. Srivastava, C. K. Huang et al., “Genetic susceptibility to food allergy is linked to differential TH2-TH1 responses in C3H/HeJ and BALB/c mice,” Journal of Allergy and Clinical Immunology, vol. 111, no. 5, pp. 1122–1128, 2003.
[16]
C. L. Thang, B. Baurhoo, J. I. Boye, B. K. Simpson, and X. Zhao, “Effects of Lactobacillus rhamnosus GG supplementation on cow's milk allergy in a mouse model,” Allergy, Asthma and Clinical Immunology, vol. 7, article 20, 2011.
[17]
E. Bailon, M. Cueto-Sola, P. Utrilla et al., “A shorter and more specific oral sensitization-based experiment model of food allergy in mice,” Journal of Immunological Methods, vol. 381, no. 1-2, pp. 41–49, 2012.
[18]
H. A. C. Atkinson and K. Miller, “Asessment of the Brown Norway rat as a suitable model for the investigation of food allergy,” Toxicology, vol. 91, no. 3, pp. 281–288, 1994.
[19]
H. A. C. Atkinson, I. T. Johnson, J. M. Gee, F. Grigoriadou, and K. Miller, “Brown Norway rat model of food allergy: effect of plant components on the development of oral sensitization,” Food and Chemical Toxicology, vol. 34, no. 1, pp. 27–32, 1996.
[20]
L. M. J. Knippels, A. H. Penninks, S. Spanhaak, and G. F. Houben, “Oral sensitization to food proteins: a Brown Norway rat model,” Clinical and Experimental Allergy, vol. 28, no. 3, pp. 368–375, 1998.
[21]
H. Akiyama, R. Teshima, J. I. Sakushima et al., “Examination of oral sensitization with ovalbumin in Brown Norway rats and three strains of mice,” Immunology Letters, vol. 78, no. 1, pp. 1–5, 2001.
[22]
P. Rupa, K. Hamilton, M. Cirinna, and B. N. Wilkie, “A neonatal swine model of allergy induced by the major food allergen chicken ovomucoid (Gal d 1),” International Archives of Allergy and Immunology, vol. 146, no. 1, pp. 11–18, 2008.
[23]
X. M. Li, D. Serebrisky, S. Y. Lee et al., “A murine model of peanut anaphylaxis: T- and B-cell responses to a major peanut allergen mimic human responses,” Journal of Allergy and Clinical Immunology, vol. 106, no. 1, pp. 150–158, 2000.
[24]
M. C. Berin, Y. Zheng, M. Domaradzki, X. M. Li, and H. A. Sampson, “Role of TLR4 in allergic sensitization to food proteins in mice,” Allergy, vol. 61, no. 1, pp. 64–71, 2006.
[25]
R. Fischer, J. R. McGhee, H. L. Vu et al., “Oral and nasal sensitization promote distinct immune responses and lung reactivity in a mouse model of peanut allergy,” The American Journal of Pathology, vol. 167, no. 6, pp. 1621–1630, 2005.
[26]
S. Parvataneni, B. Gonipeta, R. J. Tempelman, and V. Gangur, “Development of an adjuvant-free cashew nut allergy mouse model,” International Archives of Allergy and Immunology, vol. 149, no. 4, pp. 299–304, 2009.
[27]
B. Gonipeta, S. Parvataneni, P. Paruchuri, and V. Gangur, “Long-term characteristics of hazelnut allergy in an adjuvant-free mouse model,” International Archives of Allergy and Immunology, vol. 152, no. 3, pp. 219–225, 2010.
[28]
S. S. Teuber, G. del Val, S. Morigasaki et al., “The atopic dog as a model of peanut and tree nut food allergy,” Journal of Allergy and Clinical Immunology, vol. 110, no. 6, pp. 921–927, 2002.
[29]
R. M. Helm, G. T. Furuta, J. S. Stanley et al., “A neonatal swine model for peanut allergy,” Journal of Allergy and Clinical Immunology, vol. 109, no. 1, pp. 136–142, 2002.
[30]
J. L. Van Gramberg, M. J. de Veer, R. E. O. 'Hehir, E. N. T. Meeusen, and R. J. Bischof, “Induction of allergic responses to peanut allergen in sheep,” PloS ONE, vol. 7, no. 12, Article ID e51386, 2012.
[31]
S. H. Sicherer and H. A. Sampson, “Food allergy,” Journal of Allergy and Clinical Immunology, vol. 125, no. 2, pp. S116–S125, 2010.
[32]
J. Wang and H. A. Sampson, “Food allergy,” Journal of Clinical Investigation, vol. 121, no. 3, pp. 827–835, 2011.
[33]
J. M. Maloney, M. Rudengren, S. Ahlstedt, S. A. Bock, and H. A. Sampson, “The use of serum-specific IgE measurements for the diagnosis of peanut, tree nut, and seed allergy,” Journal of Allergy and Clinical Immunology, vol. 122, no. 1, pp. 145–151, 2008.
[34]
S. A. Bock, A. Muoz-Furlong, and H. A. Sampson, “Fatalities due to anaphylactic reactions to foods,” Journal of Allergy and Clinical Immunology, vol. 107, no. 1, pp. 191–193, 2001.
[35]
H. Aldemir, R. Bars, and C. Herouet-Guicheney, “Murine models for evaluating the allergenicity of novel proteins and foods,” Regulatory Toxicology and Pharmacology, vol. 54, no. 3, supplement, pp. S52–S57, 2009.
[36]
S. B. Lehrer and S. McClain, “Utility of animal models for predicting human allergenicity,” Regulatory Toxicology and Pharmacology, vol. 54, no. 3, supplement, pp. S46–S51, 2009.
[37]
E. N. Meeusen, K. J. Snibson, S. J. Hirst, and R. J. Bischof, “Sheep as a model species for the study and treatment of human asthma and other respiratory diseases,” Drug Discovery Today: Disease Models, vol. 6, no. 4, pp. 101–106, 2009.
[38]
S. McClain and G. A. Bannon, “Animal models of food allergy: opportunities and barriers,” Current Allergy and Asthma Reports, vol. 6, no. 2, pp. 141–144, 2006.
[39]
R. M. Helm, “Food allergy animal models: an overview,” Annals of the New York Academy of Sciences, vol. 964, pp. 139–150, 2002.
[40]
L. M. J. Knippels, A. H. Penninks, M. van Meeteren, and G. F. Houben, “Humoral and cellular immune responses in different rat strains on oral exposure to ovalbumin,” Food and Chemical Toxicology, vol. 37, no. 8, pp. 881–888, 1999.
[41]
P. G. Holt and K. J. Turner, “Persistent IgE-secreting cells which are refractory to T-cell control,” International Archives of Allergy and Applied Immunology, vol. 77, no. 1-2, pp. 45–46, 1985.
[42]
G. S. Ladics, L. M. J. Knippels, A. H. Penninks, G. A. Bannon, R. E. Goodman, and C. Herouet-Guicheney, “Review of animal models designed to predict the potential allergenicity of novel proteins in genetically modified crops,” Regulatory Toxicology and Pharmacology, vol. 56, no. 2, pp. 212–224, 2010.
[43]
M. E. Devey, K. J. Anderson, and R. R. A. Coombs, “The modified anaphylaxis hypothesis for cot death. Anaphylactic sensitization in guinea pigs fed cow's milk,” Clinical and Experimental Immunology, vol. 26, no. 3, pp. 542–548, 1976.
[44]
A. Perini and I. Mota, “The production of IgE and IgG1 antibodies in guinea pigs immunized with antigen and bacterial lipopolysaccharides,” Immunology, vol. 25, no. 2, pp. 297–305, 1973.
[45]
D. J. Padilla-Carlin, D. N. McMurray, and A. J. Hickey, “The guinea pig as a model of infectious diseases,” Comparative Medicine, vol. 58, no. 4, pp. 324–340, 2008.
[46]
R. S. Mueller, S. V. Bettenay, and L. Tideman, “Aero-allergens in canine atopic dermatitis in southeastern Australia based on 1000 intradermal skin tests,” Australian Veterinary Journal, vol. 78, no. 6, pp. 392–399, 2000.
[47]
S. Paterson, “Food hypersensitivity in 20 dogs with skin and gastrointestinal signs,” The Journal of Small Animal Practice, vol. 36, no. 12, pp. 529–534, 1995.
[48]
C. Mapp, J. Hartiala, and O. L. Frick, “Airway responsiveness to inhaled antigen, histamine, and methacholine in inbred, ragweed-sensitized dogs,” The American Review of Respiratory Disease, vol. 132, no. 2, pp. 292–298, 1985.
[49]
J. K. Patterson, X. G. Lei, and D. D. Miller, “The pig as an experimental model for elucidating the mechanisms governing dietary influence on mineral absorption,” Experimental Biology and Medicine, vol. 233, no. 6, pp. 651–664, 2008.
[50]
J. P. Y. Scheerlinck, K. J. Snibson, V. M. Bowles, and P. Sutton, “Biomedical applications of sheep models: from asthma to vaccines,” Trends in Biotechnology, vol. 26, no. 5, pp. 259–266, 2008.
[51]
R. J. Bischof, K. Snibson, R. Shaw, and E. N. T. Meeusen, “Induction of allergic inflammation in the lungs of sensitized sheep after local challenge with house dust mite,” Clinical and Experimental Allergy, vol. 33, no. 3, pp. 367–375, 2003.
[52]
D. Dunkin, M. C. Berin, and L. Mayer, “Allergic sensitization can be induced via multiple physiologic routes in an adjuvant-dependent manner,” Journal of Allergy and Clinical Immunology, vol. 128, no. 6, pp. 1251.e2–1258.e2, 2011.
[53]
G. Lack, D. Fox, K. Northstone, and J. Golding, “Factors associated with the development of peanut allergy in childhood,” The New England Journal of Medicine, vol. 348, no. 11, pp. 977–985, 2003.
[54]
A. T. Fox, P. Sasieni, G. du Toit, H. Syed, and G. Lack, “Household peanut consumption as a risk factor for the development of peanut allergy,” Journal of Allergy and Clinical Immunology, vol. 123, no. 2, pp. 417–423, 2009.
[55]
J. Strid, J. Hourihane, I. Kimber, R. Callard, and S. Strobel, “Disruption of the stratum corneum allows potent epicutaneous immunization with protein antigens resulting in a dominant systemic Th2 response,” European Journal of Immunology, vol. 34, no. 8, pp. 2100–2109, 2004.
[56]
J. J. Smit, K. Willemsen, I. Hassing et al., “Contribution of classic and alternative effector pathways in peanut-induced anaphylactic responses,” PloS ONE, vol. 6, no. 12, Article ID e28917, 2011.
[57]
J. M. Skripak, E. C. Matsui, K. Mudd, and R. A. Wood, “The natural history of IgE-mediated cow's milk allergy,” Journal of Allergy and Clinical Immunology, vol. 120, no. 5, pp. 1172–1177, 2007.
[58]
J. M. Wal, “Bovine milk allergenicity,” Annals of Allergy, Asthma and Immunology, vol. 93, no. 5, supplement 3, pp. S2–S11, 2004.
[59]
B. Ahrens, L. C. L. de Oliveira, L. Grabenhenrich et al., “Individual cow's milk allergens as prognostic markers for tolerance development?” Clinical and Experimental Allergy, vol. 42, no. 11, pp. 1630–1637, 2012.
[60]
M. Natale, C. Bisson, G. Monti et al., “Cow's milk allergens identification by two-dimensional immunoblotting and mass spectrometry,” Molecular Nutrition and Food Research, vol. 48, no. 5, pp. 363–369, 2004.
[61]
K. M. Saarinen, A. S. Pelkonen, M. J. M?kel?, and E. Savilahti, “Clinical course and prognosis of cow's milk allergy are dependent on milk-specific IgE status,” Journal of Allergy and Clinical Immunology, vol. 116, no. 4, pp. 869–875, 2005.
[62]
T. Vanto, S. Helppil?, K. Juntunen-Backman et al., “Prediction of the development of tolerance to milk in children with cow's milk hypersensitivity,” Journal of Pediatrics, vol. 144, no. 2, pp. 218–222, 2004.
[63]
L. M. J. Knippels and A. H. Penninks, “Assessment of protein allergenicity: studies in Brown Norway rats,” Annals of the New York Academy of Sciences, vol. 964, pp. 151–161, 2002.
[64]
R. Jimenez-Saiz, P. Rupa, and Y. Mine, “Immunomodulatory effects of heated ovomucoid-depleted egg white in a BALB/c mouse model of egg allergy,” Journal of Agricultural and Food Chemistry, vol. 59, no. 24, pp. 13195–13202, 2011.
[65]
Y. Mine and M. Yang, “Recent advances in the understanding of egg allergens: basic, industrial, and clinical perspectives,” Journal of Agricultural and Food Chemistry, vol. 56, no. 13, pp. 4874–4900, 2008.
[66]
L. M. J. Knippels, A. H. Penninks, J. J. Smit, and G. F. Houben, “Immune-mediated effects upon oral challenge of ovalbumin-sensitized Brown Norway rats: further characterization of a rat food allergy model,” Toxicology and Applied Pharmacology, vol. 156, no. 3, pp. 161–169, 1999.
[67]
J. Bernhisel-Broadbent, H. M. Dintzis, R. Z. Dintzis, and H. A. Sampson, “Allergenicity and antigenicity of chicken egg ovomucoid (Gal d III) compared with ovalbumin (Gal d I) in children with egg allergy and in mice),” Journal of Allergy and Clinical Immunology, vol. 93, no. 6, pp. 1047–1059, 1994.
[68]
M. P. de Leon, J. M. Rolland, and R. E. O'Hehir, “The peanut allergy epidemic: allergen molecular characterisation and prospects for specific therapy,” Expert Reviews in Molecular Medicine, vol. 9, no. 1, pp. 1–18, 2007.
[69]
J. Wang and H. A. Sampson, “Food anaphylaxis,” Clinical and Experimental Allergy, vol. 37, no. 5, pp. 651–660, 2007.
[70]
A. W. Burks, L. W. Williams, R. M. Helm, C. Connaughton, G. Cockrell, and T. O'Brien, “Identification of a major peanut allergen, Ara h I, in patients with atopic dermatitis and positive peanut challenges,” Journal of Allergy and Clinical Immunology, vol. 88, no. 2, pp. 172–179, 1991.
[71]
A. W. Burks, L. W. Williams, C. Connaughton, G. Cockrell, T. J. O'Brien, and R. M. Helm, “Identification and characterization of a second major peanut allergen, Ara h II, with use of the sera of patients with atopic dermatitis and positive peanut challenge,” Journal of Allergy and Clinical Immunology, vol. 90, no. 6, pp. 962–969, 1992.
[72]
M. P. de Leon, I. N. Glaspole, A. C. Drew, J. M. Rolland, R. E. O'Hehir, and C. Suphioglu, “Immunological analysis of allergenic cross-reactivity between peanut and tree nuts,” Clinical and Experimental Allergy, vol. 33, no. 9, pp. 1273–1280, 2003.
[73]
M. P. de Leon, A. C. Drew, I. N. Glaspole, C. Suphioglu, R. E. O'Hehir, and J. M. Rolland, “IgE cross-reactivity between the major peanut allergen Ara h 2 and tree nut allergens,” Molecular Immunology, vol. 44, no. 4, pp. 463–471, 2007.
[74]
R. J. Bischof, K. J. Snibson, J. V. D. Velden, and E. N. T. Meeusen, “Immune response to allergens in sheep sensitized to house dust mite,” Journal of Inflammation, vol. 5, no. 1, article 16, 2008.
[75]
J. M. Rolland, L. M. Gardner, and R. E. O'Hehir, “Allergen-related approaches to immunotherapy,” Pharmacology and Therapeutics, vol. 121, no. 3, pp. 273–284, 2009.
[76]
M. Pascal, G. N. Konstantinou, M. Masilamani, J. Lieberman, and H. A. Sampson, “In silico prediction of Ara h 2 T cell epitopes in peanut-allergic children,” Clinical and Experimental Allergy, vol. 43, no. 1, pp. 116–127, 2013.
[77]
K. D. Srivastava, L. Bardina, H. A. Sampson, and X. M. Li, “Efficacy and immunological actions of FAHF-2 in a murine model of multiple food allergies,” Annals of Allergy, Asthma and Immunology, vol. 108, no. 5, pp. 351.e1–358.e1, 2012.
[78]
K. D. Srivastava, C. Qu, T. Zhang, J. Goldfarb, H. A. Sampson, and X. M. Li, “Food allergy herbal formula-2 silences peanut-induced anaphylaxis for a prolonged posttreatment period via IFN-γ-producing CD8+ T cells,” Journal of Allergy and Clinical Immunology, vol. 123, no. 2, pp. 443–451, 2009.
[79]
K. D. Srivastava, J. D. Kattan, Z. M. Zou et al., “The Chinese herbal medicine formula FAHF-2 completely blocks anaphylactic reactions in a murine model of peanut allergy,” Journal of Allergy and Clinical Immunology, vol. 115, no. 1, pp. 171–178, 2005.
[80]
K. Blumchen, H. Ulbricht, U. Staden et al., “Oral peanut immunotherapy in children with peanut anaphylaxis,” Journal of Allergy and Clinical Immunology, vol. 126, no. 1, pp. 83.e1–91.e1, 2010.