全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Phenolic Composition and Antioxidant and Antimicrobial Activities of Extracts Obtained from Crataegus azarolus L. var. aronia (Willd.) Batt. Ovaries Calli

DOI: 10.1155/2014/623651

Full-Text   Cite this paper   Add to My Lib

Abstract:

Objective. Plant cell culture is an innovative technology to produce a variety of substances. Numerous plants synthesize among their secondary metabolites phenolic compounds which possess antioxidant and antimicrobial effects. Hawthorn (Crataegus) is one of these plants which has long been used in folk medicine and is widely utilized in pharmaceutical preparations mainly in neuro- and cardiosedative actions. Methods and Results. The production of polyphenol by fifty-two-week-old Crataegus azarolus var. aronia calli was studied in relation to growth variation and antioxidant and antimicrobial capacity within a subcultured period. The DPPH and ABTS+ assays were used to characterize the antioxidant actions of the callus cultures. Antimicrobial activity was tested by using disc diffusion and dilution assays for the determination of the minimal inhibitory concentration (MIC) and the minimal bactericidal concentration (MBC) values of each active extract. High TEACDPPH, TEACABTS, and antimicrobial activity was observed when maximal growth was reached. An optimum of total phenol, proanthocyanidins, flavonoid, (?)-epicatechin, procyanidin B2, chlorogenic acid, and hyperoside was produced during this period. Conclusion. Antioxidant and antimicrobial activities were strongly correlated with total phenols and total flavonoids. Crataegus azarolus var. aronia cells culture represents an important alternative source of natural antioxidants and antimicrobials. 1. Introduction In recent years considerable attention has been devoted to medicinal plants with antioxidant and antimicrobial properties. The antioxidant properties are commonly postulated to play an important role in preventing diseases caused by oxidative stress, such as cancer, coronary arteriosclerosis, and the ageing processes [1]. Phenolic compounds are known to possess different pharmacological activities among which antioxidant and antimicrobial effects have recently received more intention. There is much literature concerning the antioxidant and antimicrobial properties of many species from genus Crataegus L. (hawthorn). The genus Crataegus, known as “Zaarour” in Tunisia, is represented by two species in the flora of Tunisia: C. oxyacanthus ssp. monogyna (Jacq.) Rouy and Camus and Crataegus azarolus L. [2]. Crataegus azarolus is represented by two varieties: Crataegus azarolus var. aronia (Willd.) Batt. and C. azarolus var. eu-azarolus Maire; they differ by the color of fruit: yellow fruits for the former and red ones for the latter. The chemistry and pharmacology of hawthorn is well documented [3–13].

References

[1]  H. Haraguchi, T. Saito, N. Okamura, and A. Yagi, “Inhibition of lipid peroxidation and superoxide generation by diterpenoids from Rosmarinus officinalis,” Planta Medica, vol. 61, no. 4, pp. 333–336, 1995.
[2]  G. Pottier-Alapetite, Flore de la Tunisie. Angiospermes-Dicotylédones. Apétales-Dialypétales, Publications Scientifiques Tunisiennes, 1979.
[3]  T. Bahorun, F. Trotin, J. Pommery, J. Vasseur, and M. Pinkas, “Antioxidant activities of Crataegus monogyna extracts,” Planta Medica, vol. 60, no. 4, pp. 323–328, 1994.
[4]  T. Bahorun, B. Gressier, F. Trotin et al., “Oxygen species scavenging activity of phenolic extracts from hawthorn fresh plant organs and pharmaceutical preparations,” Arzneimittel-Forschung, vol. 46, no. 11, pp. 1086–1089, 1996.
[5]  Z. Zhang, Q. Chang, M. Zhu, Y. Huang, W. K. K. Ho, and Z.-Y. Chen, “Characterization of antioxidants present in hawthorn fruits,” Journal of Nutritional Biochemistry, vol. 12, no. 3, pp. 144–152, 2001.
[6]  Y. Cai, Q. Luo, M. Sun, and H. Corke, “Antioxidant activity and phenolic compounds of 112 traditional Chinese medicinal plants associated with anticancer,” Life Sciences, vol. 74, no. 17, pp. 2157–2184, 2004.
[7]  Q. Chang, Z. Zuo, M. S. S. Chow, and W. K. K. Ho, “Effect of storage temperature on phenolics stability in hawthorn (Crataegus pinnatifida var. major) fruits and a hawthorn drink,” Food Chemistry, vol. 98, no. 3, pp. 426–430, 2006.
[8]  A. Urbonavi?iute, V. Jak?tas, O. Korny?ova, V. Janulis, and A. Maru?ka, “Capillary electrophoretic analysis of flavonoids in single-styled hawthorn (Crataegus monogyna Jacq.) ethanolic extracts,” Journal of Chromatography A, vol. 1112, no. 1-2, pp. 339–344, 2006.
[9]  T. Cui, K. Nakamura, S. Tian, H. Kayahara, and Y.-L. Tian, “Polyphenolic content and physiological activities of Chinese hawthorn extracts,” Bioscience, Biotechnology and Biochemistry, vol. 70, no. 12, pp. 2948–2956, 2006.
[10]  U. Svedstr?m, H. Vuorela, R. Kostiainen, I. Laakso, and R. Hiltunen, “Fractionation of polyphenols in hawthorn into polymeric procyanidins, phenolic acids and flavonoids prior to high-performance liquid chromatographic analysis,” Journal of Chromatography A, vol. 1112, no. 1-2, pp. 103–111, 2006.
[11]  A. Sokó?-?etowska, J. Oszmiański, and A. Wojdy?o, “Antioxidant activity of the phenolic compounds of hawthorn, pine and skullcap,” Food Chemistry, vol. 103, no. 3, pp. 853–859, 2007.
[12]  P. Liu, H. Kallio, D. Lü, C. Zhou, and B. Yang, “Quantitative analysis of phenolic compounds in Chinese hawthorn (Crataegus spp.) fruits by high performance liquid chromatography-electrospray ionisation mass spectrometry,” Food Chemistry, vol. 127, no. 3, pp. 1370–1377, 2011.
[13]  G. Pan, G. Yu, C. Zhu, and J. Qiao, “Optimization of ultrasound-assisted extraction (UAE) of flavonoids compounds (FC) from hawthorn seed (HS),” Ultrasonics Sonochemistry, vol. 19, no. 3, pp. 486–490, 2012.
[14]  M. Hanus, J. Lafon, and M. Mathieu, “Double-blind, randomised, placebo-controlled study to evaluate the efficacy and safety of a fixed combination containing two plant extracts (Crataegus oxyacantha and Eschscholtzia californica) and magnesium in mild-to-moderate anxiety disorders,” Current Medical Research and Opinion, vol. 20, no. 1, pp. 63–71, 2004.
[15]  M. Veveris, E. Koch, and S. S. Chatterjee, “Crataegus special extract WS 1442 improves cardiac function and reduces infarct size in a rat model of prolonged coronary ischemia and reperfusion,” Life Sciences, vol. 74, no. 15, pp. 1945–1955, 2004.
[16]  S. R. Long, R. A. Carey, K. M. Crofoot, P. J. Proteau, and T. M. Filtz, “Effect of hawthorn (Crataegus oxycantha) crude extract and chromatographic fractions on multiple activities in a cultured cardiomyocyte assay,” Phytomedicine, vol. 13, no. 9-10, pp. 643–650, 2006.
[17]  A. F. Walker, G. Marakis, A. P. Morris, and P. A. Robinson, “Promising hypotensive effect of hawthorn extract: a randomized double-blind pilot study of mild, essential hypertension,” Phytotherapy Research, vol. 16, no. 1, pp. 48–54, 2002.
[18]  R. Bahri-Sahloul, S. Ammar, R. B. Fredj et al., “Polyphenol contents and antioxidant activities of extracts from flowers of two Crataegus azarolus L. varieties,” Pakistan Journal of Biological Sciences, vol. 12, no. 9, pp. 660–668, 2009.
[19]  W. Bors, C. Michel, and K. Stettmaier, “Structure-activity relationships governing antioxidant capacities of plant polyphenols,” Methods in Enzymology, vol. 335, pp. 166–180, 2001.
[20]  C.-Y. Chu, M.-J. Lee, C.-L. Liao, W.-L. Lin, Y.-F. Yin, and T.-H. Tseng, “Inhibitory effect of hot-water extract from dried fruit of Crataegus pinnatifida on Low-Density Lipoprotein (LDL) oxidation in cell and cell-free systems,” Journal of Agricultural and Food Chemistry, vol. 51, no. 26, pp. 7583–7588, 2003.
[21]  P. Ljubuncic, I. Portnaya, U. Cogan, H. Azaizeh, and A. Bomzon, “Antioxidant activity of Crataegus aronia aqueous extract used in traditional Arab medicine in Israel,” Journal of Ethnopharmacology, vol. 101, no. 1–3, pp. 153–161, 2005.
[22]  T. P. T. Cushnie and A. J. Lamb, “Antimicrobial activity of flavonoids,” International Journal of Antimicrobial Agents, vol. 26, no. 5, pp. 343–356, 2005.
[23]  P. Cos, A. J. Vlietinck, D. V. Berghe, and L. Maes, “Anti-infective potential of natural products: how to develop a stronger in vitro ‘proof-of-concept’,” Journal of Ethnopharmacology, vol. 106, no. 3, pp. 290–302, 2006.
[24]  I. Orhan, B. ?z?elik, M. Kartal, B. ?zdeveci, and H. Duman, “HPLC quantification of vitexine-2′′-O-rhamnoside and hyperoside in three Crataegus species and their antimicrobial and antiviral activities,” Chromatographia, vol. 66, no. 1, pp. S153–S157, 2007.
[25]  H. A. Stafford and T.-Y. Cheng, “The procyanidins of Douglas fir seedlings, callus and cell suspension cultures derived from cotyledons,” Phytochemistry, vol. 19, no. 1, pp. 131–135, 1980.
[26]  R. Schrall and H. Becker, “Produktion von catechins und oligomeren proanthocyanidinen in callus-und suspensionskulturen von Crataegus monogyna, Crataegus oxyacantha und Ginkgo biloba,” Planta Medica, vol. 32, no. 8, pp. 297–307, 1977.
[27]  T. Kartnig, G. Kogl, and B. Heydel, “Production of flavonoids in cell cultures of Crataegus monogyna,” Planta Medica, vol. 59, no. 6, pp. 537–538, 1993.
[28]  D. A. Rakotoarison, B. Gressier, F. Trotin et al., “Antioxidant activities of polyphenolic extracts from flowers, in vitro callus and cell suspension cultures of Crataegus monogyna,” Pharmazie, vol. 52, no. 1, pp. 60–64, 1997.
[29]  T. Bahorun, E. Aumjaud, H. Ramphul et al., “Phenolic constituents and antioxidant capacities of Crataegus monogyna (Hawthorn) callus extracts,” Nahrung, vol. 47, no. 3, pp. 191–198, 2003.
[30]  T. Froehlicher, T. Hennebelle, F. Martin-Nizard et al., “Phenolic profiles and antioxidative effects of hawthorn cell suspensions, fresh fruits, and medicinal dried parts,” Food Chemistry, vol. 115, no. 3, pp. 897–903, 2009.
[31]  N. Maharik, S. Elgengaihi, and H. Taha, “Anthocyanin production in callus cultures of Crataegus sinaica boiss,” Academic Research International, vol. 1, no. 1, pp. 30–34, 2009.
[32]  O. L. Gamborg, R. A. Miller, and K. Ojima, “Nutrient requirements of suspension cultures of soybean root cells,” Experimental Cell Research, vol. 50, no. 1, pp. 151–158, 1968.
[33]  Y. Moumou, F. Trotin, J. Vasseur et al., “Procyanidin production by Fagopyrum esculentum callus culture,” Planta Medica, vol. 58, no. 6, pp. 516–519, 1992.
[34]  V. L. Singleton and J. A. Rossi, “Colorimetry of total phenolics with phosphomolybdic-phosphotngtic acid reagents,” American Journal of Enology and Viticulture, vol. 16, no. 3, pp. 144–153, 1965.
[35]  L. J. Porter, L. N. Hrstich, and B. G. Chan, “The conversion of procyanidins and prodelphinidins to cyanidin and delphinidin,” Phytochemistry, vol. 25, no. 1, pp. 223–230, 1985.
[36]  J. L. C. Lamaison and A. Carnat, “Teneurs en principaux flavono?des des fleurs et des feuilles de Crataegus monogyna Jacq et de Crataegus laevigata (Poiret) DC, en fonction de la végétation,” Plantes Médicinales et Phytothérapies, vol. 25, pp. 12–16, 1990.
[37]  R. Re, N. Pellegrini, A. Proteggente, A. Pannala, M. Yang, and C. Rice-Evans, “Antioxidant activity applying an improved ABTS radical cation decolorization assay,” Free Radical Biology and Medicine, vol. 26, no. 9-10, pp. 1231–1237, 1999.
[38]  A. Marmonier, “Antibiotiques technique de diffusion en gélose méthode des disques,” in Bactériologie Médicale Techniques Usuelles, pp. 237–243, SIMEP SA, Paris, France, 1987.
[39]  S. Burt, “Essential oils: their antibacterial properties and potential applications in foods—a review,” International Journal of Food Microbiology, vol. 94, no. 3, pp. 223–253, 2004.
[40]  J. May, C. H. Chan, A. King, L. Williams, and G. L. French, “Time-kill studies of tea tree oils on clinical isolates,” Journal of Antimicrobial Chemotherapy, vol. 45, no. 5, pp. 639–643, 2000.
[41]  F. Hichri, H. B. Jannet, J. Cheriaa, S. Jegham, and Z. Mighri, “Antibacterial activities of a few prepared derivatives of oleanolic acid and of other natural triterpenic compounds,” Comptes Rendus Chimie, vol. 6, no. 4, pp. 473–483, 2003.
[42]  R. L. Akins and M. J. Rybak, “Bactericidal activities of two daptomycin regimens against clinical strains of glycopeptide intermediate-resistant Staphylococcus aureus, vancomycin-resistant Enterococcus faecium, and methicillin-resistant Staphylococcus aureus isolates in an in vitro pharmacodynamic model with simulated endocardial vegetations,” Antimicrobial Agents and Chemotherapy, vol. 45, no. 2, pp. 454–459, 2001.
[43]  A. L. Barry and C. Thornsberry, “Susceptibility test: diffusion test procedures,” in Manual of Clinical Microbiology, A. B. Hausler, W. J. Herramann, H. D. Isenberg, and H. J. Shadomy, Eds., pp. 1526–1542, American Society for Microbiology, Washington, DC, USA, 1991.
[44]  A. Smith-Palmer, J. Stewart, and L. Fyfe, “Antimicrobial properties of plant essential oils and essences against five important food-borne pathogens,” Letters in Applied Microbiology, vol. 26, no. 2, pp. 118–122, 1998.
[45]  A. Ultee, E. P. W. Kets, and E. J. Smid, “Mechanisms of action of carvacrol on the food-borne pathogen,” Applied and Environmental Microbiology, vol. 65, no. 10, pp. 4606–4610, 1999.
[46]  S. D. Cox, C. M. Mann, J. L. Markham et al., “The mode of antimicrobial action of the essential oil of Melaleuca alternifolia (Tea tree oil),” Journal of Applied Microbiology, vol. 88, no. 1, pp. 170–175, 2000.
[47]  M. Lis-Balchin, S. G. Deans, and E. Eaglesham, “Relationship between bioactivity and chemical composition of commercial essential oils,” Flavour and Fragrance Journal, vol. 13, pp. 98–104, 1998.
[48]  A. Pauli, “Antimicrobial properties of essential oil constituents,” International Journal of Aromatherapy, vol. 11, no. 3, pp. 126–133, 2001.
[49]  K. Cimanga, K. Kambu, L. Tona et al., “Correlation between chemical composition and antibacterial activity of essential oils of some aromatic medicinal plants growing in the Democratic Republic of Congo,” Journal of Ethnopharmacology, vol. 79, no. 2, pp. 213–220, 2002.
[50]  K. Rhayour, T. Bouchikhi, A. Tantaoui-Elaraki, K. Sendide, and A. Remmal, “The mechanism of bactericidal action of oregano and clove essential oils and of their phenolic major components on Escherichia coli and Bacillus subtilis,” Journal of Essential Oil Research, vol. 15, no. 5, pp. 356–362, 2003.
[51]  J. Thoroski, G. Blank, and C. Biliaderis, “Eugenol induced inhibition of extracellular enzyme production by Bacillus cereus,” Journal of Food Protection, vol. 52, no. 6, pp. 399–403, 1989.
[52]  T. Bahorun, F. Trotin, and J. Vasseur, “Polyphenol production in Crataegus tissue cultures (hawthorn),” in Biotechnology in Agriculture and Forestry: Medicinal and Aromatic Plants XII, T. Nagata and Y. Ebizuka, Eds., pp. 23–49, Springer, Berlin, Germany, 2002.
[53]  A. Djeridane, M. Yousfi, B. Nadjemi, D. Boutassouna, P. Stocker, and N. Vidal, “Antioxidant activity of some algerian medicinal plants extracts containing phenolic compounds,” Food Chemistry, vol. 97, no. 4, pp. 654–660, 2006.
[54]  M. Jerez, A. Selga, J. Sineiro, J. L. Torres, and M. J. Nú?ez, “A comparison between bark extracts from Pinus pinaster and Pinus radiata: antioxidant activity and procyanidin composition,” Food Chemistry, vol. 100, no. 2, pp. 439–444, 2007.
[55]  E. Yamazaki, M. Inagaki, O. Kurita, and T. Inoue, “Antioxidant activity of Japanese pepper (Zanthoxylum piperitum DC.) fruit,” Food Chemistry, vol. 100, no. 1, pp. 171–177, 2007.
[56]  C. F. Duffy and R. F. Power, “Antioxidant and antimicrobial properties of some Chinese plant extracts,” International Journal of Antimicrobial Agents, vol. 17, no. 6, pp. 527–529, 2001.
[57]  K. Güven, E. Yücel, and F. Cetinta?, “Antimicrobial activities of fruits of Crataegus and Pyrus species,” Pharmaceutical Biology, vol. 44, no. 2, pp. 79–83, 2006.
[58]  M. T. Gatto, S. Falcocchio, E. Grippa et al., “Antimicrobial and anti-lipase activity of quercetin and its C2-C16 3-O-acyl-esters,” Bioorganic and Medicinal Chemistry, vol. 10, no. 2, pp. 269–272, 2002.
[59]  D. Wu, Y. Kong, C. Han et al., “d-Alanine:d-alanine ligase as a new target for the flavonoids quercetin and apigenin,” International Journal of Antimicrobial Agents, vol. 32, no. 5, pp. 421–426, 2008.
[60]  A. P. Pereira, I. C. F. R. Ferreira, F. Marcelino et al., “Phenolic compounds and antimicrobial activity of olive (Olea europaea L. Cv. Cobran?osa) leaves,” Molecules, vol. 12, no. 5, pp. 1153–1162, 2007.
[61]  S.-C. Wu, G.-C. Yen, B.-S. Wang et al., “Antimutagenic and antimicrobial activities of pu-erh tea,” Food Science and Technology, vol. 40, no. 3, pp. 506–512, 2007.
[62]  W.-Y. Zhang, H.-Q. Liu, K.-Q. Xie et al., “Procyanidin dimer B2 [epicatechin-(4β-8)-epicatechin] suppresses the expression of cyclooxygenase-2 in endotoxin-treated monocytic cells,” Biochemical and Biophysical Research Communications, vol. 345, no. 1, pp. 508–515, 2006.
[63]  Y. Han, “Rutin has therapeutic effect on septic arthritis caused by Candida albicans,” International Immunopharmacology, vol. 9, no. 2, pp. 207–211, 2009.
[64]  T.-S. Jeong, E.-L. Hwang, H.-B. Lee et al., “Chitin synthase II inhibitory activity of ursolic acid, isolated from Crataegus pinnatifida,” Planta Medica, vol. 65, no. 3, pp. 261–263, 1999.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133