To address roles of bZIP transcription factors on regulation of amino acid catabolism under autophagy-induced plant cells, we examined the effect of nutrient starvation on the expression of low energy stress-related transcription factor homologs, GmbZIP53A and GmbZIP53B, and amino acid catabolism-related genes in soybean (Glycine max (L.) Merr.). Sucrose starvation treatment significantly enhanced the expressions of GmbZIP53A, but not GmbZIP53B asparagine synthase (GmASN1), proline dehydrogenase1 (GmProDH), and branched chain amino acid transaminase 3 (GmBCAT3). GmbZIP53-related immunoreactive signals were upregulated under severe starvation with sucrose starvation and protease inhibitors, while 3% sucrose and sucrose starvation had no or marginal effects on the signal. Profiles of induction of GmASN1, GmProDH and GmBCAT3 under various nutrient conditions were consistent with the profiles of GmbZIP53 protein levels but not with those of GmbZIP mRNA levels. These results indicate that GmbZIP53 proteins levels are regulated by posttranslational mechanism in response to severe starvation stress and that the increased protein of GmbZIP53 under severe starvation accelerates transcriptional induction of GmASN1, GmProDH, and GmBCAT3. Furthermore, it is conceivable that decrease of branched chain amino acid level by the BCAT-mediated degradation eventually enhances autophagy under severe starvation. 1. Introduction The perception and management of nutrient and energy levels in organisms are crucial for survival by adjusting metabolism to available resources. Recent studies revealed that sugar signals in higher plants activate various biological modules such as sugar sensor, transcription factors, sugar transporters, and metabolic enzymes of sugar and amino acids [1, 2]. In higher plants, sugar deprivation and/or low energy stress by decreased photosynthesis have appeared to induce protein degradation via autophagy and amino acid metabolism, leading to translocation of nutrients and senescence [3, 4]. Recently accumulated studies on bZIP type transcription factors of Arabidopsis concerning nutrient signal and amino acid metabolism have unveiled that a set of bZIP transcription factors, bZIP1 and bZIP53, classified to S-type subgroup among the bZIP superfamily, are master regulatory components in transcriptional induction of amino acid catabolism-related enzymes involved in low energy stress, sucrose starvation, and senescence-induced nutrient translocation [5–7]. Sucrose starvation and/or low energy stress activate bZIP1 and bZIP53a by transcriptional and
References
[1]
E. Baena-González and J. Sheen, “Convergent energy and stress signaling,” Trends in Plant Science, vol. 13, no. 9, pp. 474–482, 2008.
[2]
C. Robaglia, M. Thomas, and C. Meyer, “Sensing nutrient and energy status by SnRK1 and TOR kinases,” Current Opinion in Plant Biology, vol. 15, no. 3, pp. 301–307, 2012.
[3]
L. M. Weaver and R. M. Amasino, “Senescence is induced in individually darkened Arabidopsis leaves, but inhibited in whole darkened plants,” Plant Physiology, vol. 127, no. 3, pp. 876–886, 2001.
[4]
H. Ishida, K. Yoshimoto, M. Izumi et al., “Mobilization of Rubisco and stroma-localized fluorescent proteins of chloroplasts to the vacuole by an ATG gene-dependent autophagic process,” Plant Physiology, vol. 148, no. 1, pp. 142–155, 2008.
[5]
M. Jakoby, B. Weisshaar, W. Dr?ge-Laser et al., “bZIP transcription factors in Arabidopsis,” Trends in Plant Science, vol. 7, no. 3, pp. 106–111, 2002.
[6]
S. G. Kang, J. Price, P.-C. Lin, J. C. Hong, and J.-C. Jang, “The Arabidopsis bZIP1 transcription factor is involved in sugar signaling, protein networking, and DNA binding,” Molecular Plant, vol. 3, no. 2, pp. 361–373, 2010.
[7]
K. Dietrich, F. Weltmeier, A. Ehlert et al., “Heterodimers of the Arabidopsis transcription factors bZIP1 and bZIP53 reprogram amino acid metabolism during Low energy stress,” Plant Cell, vol. 23, no. 1, pp. 381–395, 2011.
[8]
F. Weltmeier, F. Rahmani, A. Ehlert et al., “Expression patterns within the Arabidopsis C/S1 bZIP transcription factor network: availability of heterodimerization partners controls gene expression during stress response and development,” Plant Molecular Biology, vol. 69, no. 1-2, pp. 107–119, 2009.
[9]
K. Yoshimoto, H. Hanaoka, S. Sato et al., “Processing of ATG8s, ubiquitin-like proteins, and their deconjugation by ATG4s are essential for plant autophagy,” Plant Cell, vol. 16, no. 11, pp. 2967–2983, 2004.
[10]
Y. Kabeya, N. Mizushima, T. Ueno et al., “LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing,” The EMBO Journal, vol. 19, no. 21, pp. 5720–5728, 2000.
[11]
D. J. Klionsky, J. M. Cregg, W. A. Dunn Jr. et al., “A unified nomenclature for yeast autophagy-related genes,” Developmental Cell, vol. 5, no. 4, pp. 539–545, 2003.
[12]
T. L. Rose, L. Bonneau, C. Der, D. Marty-Mazars, and F. Marty, “Starvation-induced expression of autophagy-related genes in Arabidopsis,” Biology of the Cell, vol. 98, no. 1, pp. 53–67, 2006.
[13]
H. Rouached, A. B. Arpat, and Y. Poirier, “Regulation of phosphate starvation responses in plants: signaling players and cross-talks,” Molecular Plant, vol. 3, no. 2, pp. 288–299, 2010.
[14]
N. M. P. S. Htwe, H. Tanigawa, Y. Ishibashi, S.-H. Zheng, T. Yuasa, and M. Iwaya-Inoue, “Nutrient starvation differentially regulates the autophagy-related gene GmATG8i in soybean seedlings,” Plant Biotechnology, vol. 26, no. 3, pp. 317–326, 2009.
[15]
M. Okuda, M. P. S. H. Nang, K. Oshima et al., “The ethylene signal mediates induction of GmATG8i in soybean plants under starvationstress,” Bioscience, Biotechnology, and Biochemistry, vol. 75, no. 7, pp. 1408–1412, 2011.
[16]
J. Nakamura, T. Yuasa, T. T. Huong et al., “Rice homologs of inducer of CBF expression (OsICE) are involved in cold acclimation,” Plant Biotechnology, vol. 28, no. 3, pp. 303–309, 2011.
[17]
A. Kaneko, E. Noguchi, Y. Ishibashi, T. Yuasa, and M. Iwaya-Inoue, “Sucrose starvation signal mediates induction of autophagy- and amino acid catabolism-related genes in cowpea seedling,” American Journal of Plant Sciences, vol. 4, no. 3, pp. 647–653, 2013.
[18]
L. H. M. Lam Hon Ming, S. S. Y. Peng, and G. M. Coruzzi, “Metabolic regulation of the gene encoding glutamine-dependent asparagine synthetase in Arabidopsis thaliana,” Plant Physiology, vol. 106, no. 4, pp. 1347–1357, 1994.
[19]
K. Nakashima, R. Satoh, T. Kiyosue, K. Yamaguchi-Shinozaki, and K. Shinozaki, “A gene encoding proline dehydrogenase is not only induced by proline and hypoosmolarity, but is also developmentally regulated in the reproductive organs of arabidopsis,” Plant Physiology, vol. 118, no. 4, pp. 1233–1241, 1998.
[20]
M. Malatrasi, M. Corradi, J. T. Svensson, T. J. Close, M. Gulli, and N. Marmiroli, “A branched-chain amino acid aminotransferase gene isolated from Hordeum vulgare is differentially regulated by drought stress,” Theoretical and Applied Genetics, vol. 113, no. 6, pp. 965–976, 2006.
[21]
S. Sláviková, G. Shy, Y. Yao et al., “The autophagy-associated Atg8 gene family operates both under favourable growth conditions and under starvation stresses in Arabidopsis plants,” Journal of Experimental Botany, vol. 56, no. 421, pp. 2839–2849, 2005.
[22]
D. C. Bassham, M. Laporte, F. Marty et al., “Autophagy in development and stress responses of plants,” Autophagy, vol. 2, no. 1, pp. 2–11, 2006.
[23]
K. Miura, B. J. Jing, J. Lee et al., “SIZ1-mediated sumoylation of ICE1 controls CBF3/DREB1A expression and freezing tolerance in Arabidopsis,” Plant Cell, vol. 19, no. 4, pp. 1403–1414, 2007.
[24]
N. M. P. S. Htwe, T. Yuasa, Y. Ishibashi et al., “Leaf senescence of soybean at reproductive stage is associated with induction of autophagy-related genes, GmATG8c, GmATG8i and GmATG4,” Plant Production Science, vol. 14, no. 2, pp. 141–147, 2011.
[25]
S. Binder, “Branched-chain amino acid metabolism in Arabidopsis thaliana,” Arabidopsis Book, vol. 8, article e0137, 2010.