全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Fish Larvae Response to Biophysical Changes in the Gulf of California, Mexico (Winter-Summer)

DOI: 10.1155/2013/176760

Full-Text   Cite this paper   Add to My Lib

Abstract:

We analyzed the response of fish larvae assemblages to environmental variables and to physical macro- and mesoscale processes in the Gulf of California, during four oceanographic cruises (winter and summer 2005 and 2007). Physical data of the water column obtained through CTD casts, sea surface temperature, and chlorophyll a satellite imagery were used to detect mesoscale structures. Zooplankton samples were collected with standard Bongo net tows. Fish larvae assemblages responded to latitudinal and coastal-ocean gradients, related to inflow of water to the gulf, and to biological production. The 19°C and 21°C isotherms during winter, and 29°C and 31°C during summer, limited the distribution of fish larvae at the macroscale. Between types of eddy, the cyclonic (January) registered high abundance, species richness, and zooplankton volume compared to the other anticyclonic (March) and cyclonic (September). Thermal fronts (Big Islands) of January and July affected the species distribution establishing strong differences between sides. At the mesoscale, eddy and fronts coincided with the isotherms mentioned previously, playing an important role in emphasizing the differences among species assemblages. The multivariate analysis indicated that larvae abundance was highly correlated with temperature and salinity and with chlorophyll a and zooplankton volume during winter and summer, respectively. 1. Introduction The biological-physical interactions in the oceans play an important role in determining patterns of horizontal distributions of the plankton communities [1], and these interactions occur at a wide range of temporal and spatial scales [2], being the mesoscale processes such as fronts, eddy, and upwelling, the most determinant factors in the spatial distribution and structure of the zooplankton communities on basin and local scales [3]. Mesoscale oceanographic structures such as eddy and fronts can work as mechanisms of retention and concentration of fish larvae [4–11], and upwelling filaments, including eddy, may work as mechanisms of dispersion [12–17]. The Gulf of California is a semienclosed dynamic sea where strong changes in temperature, salinity, and currents [18] are related to the seasonal flux of the Gulf of California and to tropical surface water masses which provide a unique environment where the southern tropical, subtropical, and northern temperate marine biota develops [19, 20]. The northern region has an anticyclonic circulation most of the year, while in June and September it reverses to a cyclonic eddy [21]. Strong winter upwelling is

References

[1]  D. L. Mackas, K. L. Denman, and M. R. Abbott, “Plankton patchiness: biology in the physical vernacular,” Bulletin of Marine Science, vol. 37, no. 2, pp. 652–674, 1985.
[2]  S. A. Levin, “The problem of pattern and scale ecology,” Ecology, vol. 73, no. 6, pp. 1943–1967, 1992.
[3]  H.-H. Hinrichsen, “Biological processes and links to the physics,” Deep-Sea Research Part II, vol. 56, no. 21-22, pp. 1968–1983, 2009.
[4]  T. D. Iles and M. Sinclair, “Atlantic herring: stock discreteness and abundance,” Science, vol. 215, no. 4533, pp. 627–633, 1982.
[5]  G. R. Bolz and R. G. Lough, “Retention of ichthyoplankton in the Georges bank region during the autumn-winter seasons 1971–1977,” Journal of Northwest Atlantic Fishery Science, vol. 5, no. 1, pp. 33–45, 1984.
[6]  J. S. Wroblewski and J. Cheney, “Ichthyoplankton associated with a warm core ring off the Scotian Shelf,” Canadian Journal of Fisheries and Aquatic Sciences, vol. 41, no. 2, pp. 294–303, 1984.
[7]  T. Kioerboe, P. Munk, K. Richardson, V. Christensen, and H. Paulsen, “Plankton dynamics and larval herring growth, drift and survival in a frontal area,” Marine Ecology Progress Series, vol. 44, pp. 205–219, 1988.
[8]  P. S. Lobel and A. R. Robinson, “Larval fishes and zooplankton in a cyclonic eddy in Hawaiian waters,” Journal of Plankton Research, vol. 10, no. 6, pp. 1209–1223, 1988.
[9]  A. Sabatés and M. Masó, “Unusual larval fish distribution pattern in a coastal zone of the western Mediterranean,” Limnology and Oceanography, vol. 37, no. 6, pp. 1252–1260, 1992.
[10]  A. Sournia, “Pelagic biogeography and fronts,” Progress in Oceanography, vol. 34, no. 2-3, pp. 109–120, 1994.
[11]  J. M. Rodríguez, E. D. Barton, S. Hernández-León, and J. Arístegui, “The influence of mesoscale physical processes on the larval fish community in the Canaries CTZ, in summer,” Progress in Oceanography, vol. 62, no. 2-4, pp. 171–188, 2004.
[12]  G. R. Flierl and J. S. Wroblewski, “The possible influence of warm core Gulf Stream rings upon shelf water larval fish distribution,” Fishery Bulletin, vol. 83, no. 3, pp. 313–330, 1985.
[13]  P. C. Fiedler, “Offshore entrainment of anchovy spawning habitat, eggs, and larvae by a displaced eddy in 1985,” California Cooperative Oceanic Fisheries Investigations Reports, vol. 27, pp. 144–152, 1986.
[14]  R. A. Myers and K. Drinkwater, “The influence of Gulf Stream warm core rings on recruitment of fish in the northwest Atlantic,” Journal of Marine Research, vol. 47, no. 3, pp. 635–656, 1989.
[15]  C. Roy, “An upwelling-induced retention area off Senegal: a mechanism to link upwelling and retention processes,” South African Journal of Marine Science, vol. 19, no. 1, pp. 89–98, 1998.
[16]  K. A. Smith and I. M. Suthers, “Displacement of diverse ichthyoplankton assemblages by a coastal upwelling event on the Sydney shelf,” Marine Ecology Progress Series, vol. 176, pp. 49–62, 1999.
[17]  P. Bécognée, C. Almeida, J. M. Rodríguez et al., “Mesoscale distribution of clupeoid larvae in an upwelling filament trapped by a quasi-permanent cyclonic eddy off northwest Africa,” Deep-Sea Research I, vol. 56, no. 3, pp. 330–343, 2009.
[18]  M. F. Lavín and S. G. Marinone, “An overview of the physical oceanography of the Gulf California,” in Nonlinear Processes in Geophysical Fluid Dynamics. A Tribute to the Scientific Work of Pedro Ripa, O. Velasco Fuentes, J. Sheinbaum, and J. Ochoa, Eds., Chapter 11, pp. 173–204, Kluwer Academic, Amsterdam, The Netherlands, 2003.
[19]  J. L. Castro-Aguirre, E. F. Balart, and J. Arvizu-Martínez, “Contribución al conocimiento del origen y distribución de la ictiofauna del Golfo de California, México,” Hidrobiológica, vol. 5, no. 1-2, pp. 57–78, 1995.
[20]  G. Aceves-Medina, S. P. A. Jiménez-Rosenberg, A. Hinojosa-Medina et al., “Fish larvae from the gulf of California,” Scientia Marina, vol. 67, no. 1, pp. 1–11, 2003.
[21]  A. Jiménez, S. G. Marinone, and A. Parés, “Efecto de la variabilidad espacial y temporal de viento sobre la circulación en el Golfo de California,” Ciencias Marinas, vol. 31, no. 2, pp. 357–368, 2005.
[22]  W. S. Pegau, E. Boss, and A. Martínez, “Ocean color observations of eddies during the summer in the Gulf of California,” Geophysical Research Letters, vol. 29, no. 9, pp. 1–3, 2002.
[23]  L. Zamudio, P. Hogan, and E. J. Metzger, “Summer generation of the Southern Gulf of Colifornia eddy train,” Journal of Geophysical Research C, vol. 113, no. 6, Article ID C06020, 2008.
[24]  G. Aceves-Medina, S. P. A. Jiménez-Rosenberg, A. Hinojosa-Medina, R. Funes-Rodríguez, R. J. Saldierna-Martínez, and P. E. Smith, “Fish larvae assemblages in the Gulf of California,” Journal of Fish Biology, vol. 65, no. 3, pp. 832–847, 2004.
[25]  E. A. Inda-Díaz, L. Sánchez-Velasco, and M. F. Lavín, “Three-dimensional distribution of small pelagic fish larvae (Sardinops sagax and Engraulis mordax) in a tidal-mixing front and surrounding waters (Gulf of California),” Journal of Plankton Research, vol. 32, no. 9, pp. 1241–1254, 2010.
[26]  G. Aceves-Medina, R. Palomares-García, J. Gómez-Gutiérrez, C. J. Robinson, and R. J. Saldierna-Martínez, “Multivariate characterization of spawning and larval environments of small pelagic fishes in the Gulf of California,” Journal of Plankton Research, vol. 31, no. 10, pp. 1–19, 2009.
[27]  M. Peguero-Icaza, L. Sánchez-Velasco, M. F. Lavín, and S. G. Marinone, “Larval fish assemblages, environment and circulation in a semienclosed sea (Gulf of California, México),” Estuarine, Coastal and Shelf Science, vol. 79, no. 2, pp. 277–288, 2008.
[28]  A. Danell-Jiménez, L. Sánchez-Velasco, M. F. Lavín, and S. G. Marinone, “Three-dimensional distribution of larval fish assemblages across a surface thermal/chlorophyll front in a semienclosed sea,” Estuarine, Coastal and Shelf Science, vol. 85, no. 3, pp. 487–496, 2009.
[29]  L. Sánchez-Velasco, M. F. Lavín, M. Peguero-Icaza et al., “Seasonal changes in larval fish assemblages in a semi-enclosed sea (Gulf of California),” Continental Shelf Research, vol. 29, no. 14, pp. 1697–1710, 2009.
[30]  F. Contreras-Catala, L. Sánchez-Velasco, M. F. Lavín, and V. M. Godínez, “Three-dimensional distribution of larval fish assemblages in an anticyclonic eddy in a semi-enclosed sea (Gulf of California),” Journal of Plankton Research, vol. 34, no. 6, pp. 548–562, 2012.
[31]  J. H. Simpson, “The shelf-sea fronts: implications of their existence and behaviour,” Philosophical Transactions of the Royal Society of London A, Mathemathical and Physical Sciences, vol. 302, no. 1472, pp. 531–546, 1981.
[32]  E. Torres-Orozco, Análisis volumétrico de las masas de agua del Golfo de California [M.S. thesis], Centro de Investigación Científica y de Educación Superior, 1993.
[33]  P. E. Smith and S. L. Richardson, Standard Techniques for Pelagic Fish Egg and Larva Surveys, FAO, 1977.
[34]  J. R. Beers, “Determination of zooplankton biomass,” in Zooplankton Fixation and Preservation. Monographs on Oceanographic Methodology, H. F. Steedman, Ed., Chapter 2, pp. 35–84, The UNESCO Press, Paris, France, 1976.
[35]  H. G. Moser, W. J. Richards, D. M. Cohen, A. W. J. Kendall, and S. L. Richardson, Ontogeny and Systematics of Fishes, Allen Press, 1984.
[36]  H. G. Moser, The Early Stages of Fishes in the California Current Region, vol. 1, Atlas 33, Allen Press, 1996.
[37]  B. S. Beltrán-León and R. Ríos, Estadios Tempranos De Peces Del Pacífico Colombiano, vol. 1, Instituto Nacional de Pesca y Acuicultura, 2000.
[38]  B. S. Beltrán-León and R. Ríos, Estadios Tempranos De Peces Del Pacífico Colombiano, vol. 2, Instituto Nacional de Pesca y Acuicultura, 2000.
[39]  W. J. Richards, Early Stages of Atlantic Fishes. An Identification Guide for the Western Central North Atlantic, vol. 1, Taylor and Francis, 2006.
[40]  W. J. Richards, Early Stages of Atlantic Fishes. An Identification Guide For the Western Central North Atlantic, vol. 2, Taylor and Francis, 2006.
[41]  C. J. F. Ter Braak and I. C. Prentice, “A theory of gradient analysis,” Advances in Ecological Research, vol. 34, no. 3, pp. 235–282, 2004.
[42]  P. Legendre and L. Legendre, Numerical Ecology, vol. 20, Elsevier, 1998.
[43]  M. F. Lavín, E. Beier, and A. Badan, “Estructura hidrográfica y circulación del Golfo de California: escalas estacionales e interanuales,” in Contribuciones a la Oceanografía Física En México, M. F. Lavin, Ed., Monografía No. 3, Chapter 7, pp. 141–172, Unión Geofísica Mexicana, Estado de Zacatecas, México, 1997.
[44]  S. álvarez-Borrego and J. Lara-Lara, “The physical environment and primary productivity of the Gulf of California,” in The Gulf and Peninsular Province of the Californias, B. R. T. Simoneit and J. P. Dauphin, Eds., vol. 47 of American Association of Petroleum Geologists Memoir, pp. 555–567, 1991.
[45]  T. L. Espinosa-Carreón and J. E. Valdez-Holguín, “Variabilidad interanual de clorofila en el Golfo de California,” Ecología Aplicada, vol. 6, no. 1, pp. 83–92, 2007.
[46]  S. álvarez-Borrego, J. A. Rivera, G. Gaxiola-Castro, M. J. Acosta-Ruiz, and R. A. Schwartzlose, “Nutrientes en el Golfo de California,” Ciencias Marinas, vol. 5, no. 2, pp. 53–71, 1978.
[47]  R. Avenda?o-Ibarra, R. De Silva-Dávila, G. Aceves-Medina, H. Urías-Leyva, and G. Vázquez-López, Distributional Atlas of Fish Larvae of the Southern Region of the Gulf of California (February–March 2005), Instituto Politécnico Nacional, 2009.
[48]  M. L. Argote, A. Amador, and M. F. Lavin, “Tidal dissipation and stratification in the Gulf of California,” Journal of Geophysical Research, vol. 100, no. 8, pp. 16103–16118, 1995.
[49]  R. M. Hidalgo-González, S. álvarez-Borrego, and A. Zirino, “Mixing in the region of the midrift islands of the Gulf of California: effect on surface pCO2,” Ciencias Marinas, vol. 23, no. 3, pp. 317–327, 1997.
[50]  P. H. Ressler, J. A. Holmes, G. W. Fleischer, R. E. Thomas, and K. C. Cooke, “Pacific hake, Merluccius productus, autecology: a timely review,” Marine Fisheries Review, vol. 69, no. 1–4, pp. 1–24, 2007.
[51]  B. Y. Sumida and H. G. Moser, “Food and feeding of Pacific hake larvae, Merluccius productus, off southern California and northern Baja California,” California Cooperative Oceanic Fisheries, Investigations Reports, vol. 21, pp. 161–166, 1980.
[52]  J. Gómez-Gutiérrez, S. Martínez-Gómez, and C. J. Robinson, “Influence of thermo-haline fronts forced by tides on near-surface zooplankton aggregation and community structure in Bahía Magdalena, México,” Marine Ecology Progress Series, vol. 346, pp. 109–125, 2007.
[53]  C. J. Robinson, S. Gómez-Aguirre, and J. Gómez-Gutiérrez, “Pacific sardine behaviour related to tidal current dynamics in Bahía Magdalena, México,” Journal of Fish Biology, vol. 71, no. 1, pp. 200–218, 2007.
[54]  J. R. Taylor and R. Ferrari, “Ocean fronts trigger high latitude phytoplankton blooms,” Geophysical Research Letters, vol. 38, no. 23, Article ID L23601, 2011.
[55]  S. G. Marinone, “Seasonal surface connectivity in the Gulf of California,” Estuarine, Coastal and Shelf Science, vol. 100, pp. 133–141, 2012.
[56]  P. L. Richardson, C. Maillard, and T. B. Stanford, “The physical structure and life history of cyclonic Gulf Stream ring Allen,” Journal of Geophysical Research, vol. 84, no. 12, pp. 7727–7741, 1979.
[57]  A. C. Vastano, J. E. Schmitz, and D. E. Hagan, “The physical oceanography of two rings observed by the cyclonic ring experiment. Part I: physical structure,” Journal of Physical Oceanography, vol. 10, no. 4, pp. 493–513, 1980.
[58]  J. M. Figueroa, S. G. Marinone, and M. F. Lavín, “A description of geostrophic gyres in the southern Gulf of California,” in Nonlinear Processes in Geophysical Fluid Dynamics. A Tribute To the Scientific Work of Pedro, Ripa, O. Velasco Fuentes, J. Sheinbaum, and J. Ochoa, Eds., Chapter 14, pp. 237–255, Kluwer Academic, Amsterdam, The Netherlands, 2003.
[59]  M. E. Huntley, A. González, Y. Zhu, M. Zhou, and X. Irigoien, “Zooplankton dynamics in a mesoscale eddy-jet system off California,” Marine Ecology Progress Series, vol. 201, pp. 165–178, 2000.
[60]  A. Bakun, “Fronts and eddies as key structures in the habitat of marine fish larvae: opportunity, adaptive response and competitive advantage,” Scientia Marina, vol. 70, no. 2, pp. 105–122, 2006.
[61]  T. L. Espinosa-Carreón, G. Gaxiola-Castro, E. Beier, P. T. Strub, and J. A. Kurczyn, “Effects of mesoscale processes on phytoplankton chlorophyll off Baja California,” Journal of Geophysical Research C, vol. 117, no. 4, Article ID C04005, 2012.
[62]  E. Atwood, J. T. Duffy-Anderson, J. K. Horne, and C. Ladd, “Influence of mesoscale eddies on ichthyoplankton assemblages in the Gulf of Alaska,” Fisheries Oceanography, vol. 19, no. 6, pp. 493–507, 2010.
[63]  G. I. Roden, “Oceanographic aspects of Gulf of California,” in Marine Geology of the Gulf of California: A Symposium, T. H. Van Andel and G. G. Shor Jr., Eds., pp. 30–54, 1964.
[64]  D. C. Escobedo-Urías, A. Martínez-López, A. Jiménez-Illescas, A. E. Ulloa-Pérez, and A. Zavala-Norzagaray, “Intercambio de carbono orgánico particulado del sistema lagunar San Ignacio-Navachiste, Sinaloa, con el mar adyacente,” in Carbono En Ecosistemas Acuáticos De México, B. Hernández de la Torre and G. Gaxiola-Castro, Eds., Chapter 11, pp. 171–185, Secretaría de Medio Ambiente y Recursos Naturales. Instituto Nacional de Ecología; Centro de Investigación Científica y de Educación Superior de Ensenada, Baja California, México, 2007.
[65]  A. Martínez-López and I. Gárate-Lizárraga, “Variación diurna de la materia orgánica particulada en una laguna costera del Golfo de California,” Revista De Biología Tropical, vol. 45, no. 4, pp. 1310–1317, 1997.
[66]  J. García-Pamanes, J. R. Lara-Lara, and C. Bazán-Guzmán, “Pastoreo por el mesozooplancton en la región central del Golfo de California: un estudio estacional,” in Carbono En Ecosistemas Acuáticos De México, B. Hernández de la Torre and G. Gaxiola, Eds., Chapter 9, pp. 141–155, Secretaría de Medio Ambiente y Recursos Naturales. Instituto Nacional de Ecología; Centro de Investigación Científica y de Educación Superior de Ensenada, Baja California, México, 2007.
[67]  E. Beier and P. Ripa, “Seasonal gyres in the Northern Gulf of California,” Journal of Physical Oceanography, vol. 29, no. 2, pp. 305–311, 1999.
[68]  V. Makarov and A. Jiménez, “Corrientes básicas barotrópicas en el Golfo de California,” Ciencias Marinas, vol. 29, no. 2, pp. 141–153, 2003.
[69]  K. Sait?, “Distribution of paralarvae of Ommastrephes bartrami and Eucleoteuthis luminosa in the eastern waters off Ogasawara Islands,” Fisheries Research Institute, no. 58, pp. 15–23, 1994.
[70]  M. D. Ohman and P. E. Smith, “A comparison of zooplankton sampling methods in the CalCOFI time series,” California Cooperative Oceanic Fisheries Investigations Reports, vol. 36, pp. 153–158, 1995.
[71]  H. G. Moser, E. H. Ahlstrom, D. Kramer, and E. G. Stevens, “Distribution and abundance of fish eggs and larvae in the Gulf of California,” California Cooperative Oceanic Fisheries Investigations Reports, vol. 17, pp. 112–128, 1974.
[72]  R. J. Lynn, “Variability in the spawning habitat of Pacific sardine (Sardinops sagax) off southern and central California,” Fisheries Oceanography, vol. 12, no. 6, pp. 541–553, 2003.
[73]  G. W. Boehlert and B. C. Mundy, “Ichthyoplankton assemblages at seamounts and oceanic islands,” Bulletin of Marine Science, vol. 53, no. 2, pp. 336–361, 1993.
[74]  H. G. Moser and P. E. Smith, “Larval fish assemblages and ocean boundaries,” Bulletin of Marine Science, vol. 53, no. 2, pp. 283–289, 1993.
[75]  T. J. Miller, “Assemblages, communities, and species interactions,” in Concepts in Fishery Science: The Unique Contributions of Early Life Stages, L. A. Fuiman and R. G. Werner, Eds., Chapter 8, pp. 183–205, Blackwell Sciences, Malden, Mass, USA, 2002.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133